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1. Jan 13: Syllabus, sheaves

Recommended reading: Harthsorne II.1, Vakil 2.1-2
Up till now, you have been thinking of algebraic varieties more in the classical sense– they’re zero sets of

polynomials V (f1, . . . , fn). From your perspective, in k[x] you don’t really care too much about x versus x2

because their vanishing sets are the same, maybe you’d default to taking the one that generates a radical
ideal. But you lose some things with this perspective. Certainly I wouldn’t say it’s great for multiplicities
and whatnot.

So, we need to upgrade: instead of varieties in the classical sense, we’ll eventually think of schemes. Some
of the intuition will port over: we’re thinking of things/geometric objects (or, topological spaces) that look
like they’re (locally) ”cut out by polynomials,” and a decent amount of the practical work of computing
things will resemble some of the polynomial fiddling you’ve done before, but we’re keeping track of more of
the data of the functions on these spaces.

Roughly, a scheme has three levels of data.

• underlying set of points
• topology on the set (so the first two are the data of the topological space)
• and the ”structure sheaf:” the data of algebraic functions on your space.

(The last one helps distinguish things like V (x) versus V (x2).). Here is where we start brushing up against
Grothendieck’s perspective: that when studying an object, it’s less important to study the object itself and
more important to study functions between them, how they relate to other things.

Now, before that, we need to do sheaves, which are, informally, a bundling of data about functions on
open sets of a topological space. The usual example, which you should have in mind throughout,
is the data of differentiable functions on a differentiable manifold.

We begin with sheaves of sets, but the idea extends to sheaves of groups, rings, k-algebras, etc.

Definition 1.1. Let X be a topological space. A presheaf F on X is the following data:

• To each open set U ⊆ X, we have an assignment F (U) of a set (or group, or ring, etc...)
• For each inclusion V ⊆ U of open sets, we have restriction maps resUV : F (U) → F (V ). The

restriction maps need to follow some reasonable properties:
– resUU : F (U)→ F (U) is the identity map.
– For inclusions W ⊆ V ⊆ U we have resUW = resVW ◦ resUV . That is, the following diagram

commutes:

F (U) F (V )

F (W )

resUV

resUW
resVW

Notational bits-and-bobs:

• Elements of F (U) are called sections of F over/on U .
• F (U) is notated a few other ways:

– Γ(U,F )
– H0(U,F )
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• Note that a presheaf is precisely the data of a contravariant functor from the category of open sets
on X to the category of sets (of groups, rings, etc).

Definition 1.2. A presheaf (X,F ) is a sheaf if it satisfies two more additional axioms.

• Identity/uniqueness: If {Ui}i∈I is an open cover of U and f1, f2 ∈ F (U) are two sections/functions
such that

resUUi
f1 = resUUi

f2

for all i ∈ I, then f1 = f2. (That is, two sections that line up on each piece of a cover have to have
been the same).

• Gluing: Let {Ui}i∈I be an open cover of U . If you have an fi ∈ F (Ui) for each i such that, for any
i, j:

resUi

Ui∩Uj
fi = res

Uj

Ui∩Uj
fj

then there is an f ∈ F (U) such that resUUi
f = fi for each i. (That is, you have an open cover, a

choice of section on each piece of the cover, and these choices agree on overlaps, then you should be
able to glue these to a section on the whole thing.)

Example 1.3. Let X be a differentiable manifold. Let F be the sheaf that assigns to an open set U the ring
of differentiable real-valued functions F (U) defined on U . For V ⊆ U , the restriction map is the restriction
of domain:

F (U)→ F (V )

f 7→ f |V
The fact that differentiable functions are ”defined by their values” makes it clear that this is a presheaf.
Likewise, the two additional sheaf properties are clear: if two functions agree on an open cover, they are the
same function. And if you have a differentiable function on each piece and the overlaps agree, you can define
the function on the whole manifold (or open set U).

Remark 1.4. In general, you may see things like resUV f written as f |V to save space.

Since I don’t wait to shift gears too much on the first day, let’s do an example of another important sheaf:

Example 1.5 ((Skyscraper shaves)). Let S be a set, p ∈ X a point. Set:

ip,∗S(U) =

{
S p ∈ U
{e} p 6∈ U

here {e} is any one element subset of S. If you roughly try to draw this, you see the skyscraper-type behavior
around p.

2. Jan 15: Intro to Spec

Recommended reading: Hartshorne II.2, Vakil 3.1-3.4
We will eventually need to worry about morphisms of sheaves, pushforwards, pullbacks, and more. But

that can come a bit later, when we better understand the topological spaces we want to look.
Recall that we are trying to define schemes, which consist of:

• underlying set of points
• topology on the set (so the first two are the data of the topological space)
• and the ”structure sheaf:” the data of algebraic functions on your space.

Now on our journey towards schemes, which are our generalizations of algebraic varieties/sets, we need to
think of the underlying topological space of our geometric objects. The building blocks of these will be the
spectrum of a ring. These correspond to affine schemes, the building blocks of schemes in general.

There will resemble things from 552 somewhat: our first examples will be visualizable in some Cn with
the many of the points corresponding to tuples (a1, . . . , an) satisfying some polynomials, along with some
extra points that are useful to have.
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Do note: ring here means a commutative ring with identity. For example: C,R,Fp,Fp,C[t],C(t), poly-
nomial rings, quotient rings. We will often focus on C-algebras or k-algebras with k algebraically closed, as
this is the best place to start off. (Some of our tools will break down over k not algebraically closed). As
appropriate, I may add in some examples over non-algebraically closed fields, but I will largely leave those
examples to your future number theory courses.

The idea: given a ring A, we want the most natural/nontrivial space on which A becomes a ”ring of
functions.” You’ve encountered this before with coordinate rings in 552.

Example 2.1 ((Rough intuition)). The algebraic functions on the complex line C should be single variable
polynomials: C[t]. If you cut out the origin and consider the open set C \ {0}, you no longer have to worry
about t zeroing out, so your algebraic functions should now be C[t, t−1].

Definition 2.2. As a set, Spec A is the set of all prime ideals of A.

Example 2.3 (The complex affine line). Let us consider the case of A = C[t], and how we can think of C[t]
as the ring of functions over Spec C[t]. First, let us compute the spectrum. By the fundamental theorem of
algebra, we have:

Spec C[t] = {(t− a) : a ∈ C} t {(0)}
that is, we get a point for each element of C, and then this extra point (0). Given that this space is ”basically
C with some extra stuff,” it’s not strange to think of C[t], i.e. complex polynomials in one variable, aka
polynomials that can take in one complex input, as the ring of functions over Spec C[t], which is nearly C.
We visualize below:

(t− 0) (t− 1) (t− a) (0)

0 1 a ???

A few things to note:

• At each point (t− a) of the spectrum, we have an evaluation map

C[t]→ C[t]

(t− a)
∼= C

f(t) 7→ f(a)

That is, f is sent to its image in C[t]/(t−a), which says t can be swapped for a. That is, we send f(t)
to f(a). This evaluates the polynomial at a. We will see a similar construction in general. Note that
this means these points are keeping track of all the values of this function. If we have two different
polynomials f1, f2 then their evaluations at some points will differ: i.e. functions are distinguished
by their values. This will not always be true!. See Example 2.6.

• (0) is called ”the generic point.” It is ”close” to every point, so it is ”generically” on the line, but is
not equal to any of the (t − a). Some would choose to draw it as ”fuzz” amongst the line. We will
understand the generic point better when we understand the topology of Spec A.

• Spec C[t] will come to be known to us as the complex affine line, denote A1
C.

Example 2.4 (Don’t say I never gave you an example that wasn’t over C!). Consider A = R[t]. The prime
ideals are of one of two forms:

(t− a) a ∈ R (t− a)(t− a) a ∈ C \ R

Hence we get an identification:

Spec R[t] = C/Gal(C/R) t {(0)}
which you can identify with the upper half plane along with a generic point.

Definition 2.5 (Evaluation map). Given a ring A, f ∈ A, and p ∈ Spec A, the value of f at p, denoted
by f(p), is the image of f under:

A 7→ A/p→ Frac(A/p)
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This gives us a way to ”evaluate” our sections/functions on points, but note that the field in which the values
lie is thought of as varying with p. The field Frac(A/p) =: k(p) is known as the residue field at p.

Example 2.6 (Functions are not always separated by values at points). Consider the set Spec C[t]/(t2). As
a set of points it has just one element: (t).
t is an element of the ring C[t]/(t2), and we should think of it as being very small: so small that its square

is zero, but it itself is not zero. If we think about the evaluations of this function note that:

C[t]/(t2)→ Frac(C[t]/(t, t2)) ∼= C
t 7→ 0

That is, both the function t and 0 on the LHS evaluate to 0 on the RHS.But this is the only evaluation map
to consider on this spec. So, we see how functions cannot be necessarily be separated by values. Eventually,
we will see that the issue is that Spec C[t]/(t2) is not reduced. See Definition 7.13.

When drawing Spec C[t]/(t2), one should visualize it as a point with a small tangent direction attached.

Now, it is time to define the topology on these spaces. The idea: closed sets should be sets of points where
functions vanish (similar to 552).

f vanishes at p ⇐⇒ f(p) = 0

⇐⇒ f = 0 in A/p

⇐⇒ f ∈ p (⇐⇒ (f) ⊆ p)

Definition 2.7 (Various vanishing loci definitions). Let f ∈ A, S ⊆ A. Then:

V (f) = {p ∈ Spec A : (f) ⊆ p}
V (S) = {p ∈ Spec A : S ⊆ p} = {p ∈ Spec A : 〈S〉 ⊆ p}

Note that V (S) = V (〈S〉).

Definition 2.8. A (Zariski) closed subset of Spec A is any set of the form of a vanishing locus V (a) for a
an ideal.

Proposition 2.9. The collection of Zariski closed subsets forms a topology on Spec A.

Proof. Observe:

∅ = V ((1))

Spec A = V ((0))

V (a) ∪ V (b) = V (ab)⋂
i∈I

V (ai) = V

(∑
i∈I

ai

)
�

Example 2.10. The closed sets in Spec C[t] are the whole space, the empty set, and

V (f(t)) = V
(
((t− a1) . . . (t− an))

)
= ∪ni=1V ((t− ai)) = {(t− ai) : 1 ≤ i ≤ n}

i.e. finite collections of non-generic points.
Note that {(0)} = Spec C[t]. That is, the generic point is ”close” to all other points, and ”sits along the

whole line.”

Definition 2.11. Define D(f) = Spec A \ V ((f)). These open sets form a basis for the topology.

Proposition 2.12. Let S be a multiplicative set. By studying the map ϕ : A → S−1A, a 7→ a/1, this
induces a bijection:

{primes in A with p ∩ S = ∅} ←→ {primes in S−1A}



6 MORELAND

We’ve motivated that A should be thought of as the ring of algebraic functions over Spec A. Then, what
should be the ring of functions on the open set D(f)? Well, since we’re not working with the full spec,
we should be able to invert things that don’t vanish on the set. That is, things whose vanishing sets are
squirreled away in V (f), the set we are cutting out.

Set OSpec A(D(f)) = S−1A where S is the following multiplicative set:

S = {g ∈ A : g(p) 6= 0 for all p ∈ D(f)} = {g ∈ A : V (g) ⊆ V (f)}
This definition only depends on D(f), not on f itself. But luckily:

Proposition 2.13. The natural map
Af → OSpec A(D(f))

is an isomorphism.

Lemma 2.14. D(f) ⊆ D(g) (that is, V (g) ⊆ V (f)) if and only if fn ∈ (g), if and only if g is invertible in
Af .

Proof. fn ∈ (g) ⇐⇒
√

(f) ⊆ √g ⇐⇒ the prime ideals containing (f) are a superset of those containing

(g), which means V (g) ⊆ V (f). Then fk = gm, so g is invertible in Af . �

That is, algebraic functions on D(f) are obtained by inverting f . So, we have the makings of a structure
sheaf, i.e. a sheaf OSpec A where OSpec A(U) is the ring of algebraic functions on U . But we only have it on
a distinguished basis. The question becomes: is this enough to determine the sheaf overall? Will we be able
to do computations in the future/check nice properties by just checking it on the basis of the D(f)? The
answer: yes! Back to sheaf theory.

3. Jan 17: Let’s understand sheaves better (stalks, morphisms)

Recommended reading: Hartshorne II.1,Vakil 2.3-2.4
We learned about the topological spaces that will be glued into schemes. These are the Spec A, and we

think of A as the ring of algebraic functions on Spec A. Again, we want to assemble a structure sheaf OSpec A

on Spec A such that
OSpec A(U) = ring of algebraic functions on U

From this perspective, we saw it was reasonable to set

OSpec A(D(f)) = S−1A ∼= Af

where
S = {g ∈ A : g(p) 6= 0 for all p ∈ D(f)} = {g ∈ A : V (g) ⊆ V (f)}

Problem: what about this would-ve sheaf on open sets in general? We would like to describe
this sheaf, i.e. describe the rings of algebraic functions, on nice D(f) to be enough. It is, but we need to
do a bit of work to say that. (Here Vakil and Harthsorne somewhat ”diverge.” Vakil shows that defining a
sheaf on a basis is sufficient; Hartshorne just describes the OSpec A(U) from the get-go, with the construction
being the one you’d do when defining a sheaf from a base. In the end, they are equivalent data/constructions).

We’ll get to all that, but we should cover some necessary details/definitions/general knowledge first.

Definition 3.1. Let (X,F ) be a sheaf on a topological space X. Let x ∈ X be a point. The stalk of F at
x is defined as the direct limit:

Fx := lim−→
U3x

F (U) = {(f, U) : f ∈ F (U), x ∈ U}

where (f, U) ∼ (g, V ) if and only if there is some W ⊆ U, V , with W containing p, such that f |W = g|W .

You can draw a pic of this in the case of the sheaf of differentiable functions on some differentiable manifold
M . Equality on the stalk means two functions, defined near at point x, agree on some smaller open set around
the point. Observe that in this case, the stalk is a local ring: its unique maximal ideal is the ideal of all
functions vanishing at x.

Definition 3.2. Elements of a stalk are called germs.
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Definition 3.3. Given a section f ∈ F (U) and a point p ∈ U , we let fp denote the image of f in the stalk:

F (U)→ Fp

f 7→ fp = (f, U)

Remark 3.4. We will see later on that many properties we want to test of sheaves (or morphisms of sheaves)
can be tested by checking the analogous condition on the stalks. This is reasonable, looking at the gluing
axiom of a sheaf.

Definition 3.5 (Morphisms of (pre)sheaves). Let F ,G be (pre)sheaves on a topological space X. A mor-
phism F → G is a collection of maps φU : F (U) → G (U) for each U such that the following diagram
commutes:

F (U) G (U)

F (V ) G (V )

φU

resUV resUV

φV

Consequently, we can see that ϕ defines a map on stalks ϕx : Fx → Gx by sending (f, U)→ (ϕU (f), U). An
isomorphism is a morphism with a two-sided inverse.

Let’s restrict our attention to sheaves of abelian groups at this point (we rarely fall outside this scenario).

Proposition 3.6. Let F ,G be sheaves of abelian groups on a topological space X. Let ϕ : F → G be a
morphism of sheaves. Then ϕ is an isomorphism if and only if ϕx is an isomorphism for all x ∈ X.

Proof. ⇒ is clear. We prove the ⇐ direction. It is enough to show that ϕU is an isomorphism for each U .
Let’s start by showing injectivity: suppose s ∈ F (U) is a section such that ϕU (s) = 0 in G (U). Then the

germ ϕU (s)x = ϕx(sx) is zero for each x ∈ U . Then sx = 0 in each x ∈ U by injectivity on stalks. Then it
follows from the definition of the stalks that we can find an open cover of U such that s restricts to zero on
each piece. That is, s = 0.

Now we show surjectivity: suppose we are considering ϕU : F (U) → G (U). Let t ∈ G (U). We’ll piece
together something that maps to it.

For each x ∈ U , we have tx ∈ Gx and it must be the image of some sx ∈ Fx. sx can be repped by some
s(x) ∈ Vx 3 x. Then ϕ(s(x)), t|Vx

are two elements of G (Vx) with the same germ, so ϕ(s(x)), t agree in some
neighborhood Wx of x.

Cover U with these Wx, and consider the s(x) (well, technically s(x)|Wx
) that we get for each one. On

the overlaps, these must agree due to injectivity (their overlaps go to t|Wx). So we can piece them together
to get an s ∈ F (U) that maps to t. �

Remark 3.7. Note that the proof of surjectivity needed injectivity!

Definition 3.8 ((Tentative definition of ker, image, coker)). Given a morphism ϕ : F → G of presheaves of
abelian groups, we can define the presheaves ker(ϕ), coker(ϕ), im(ϕ), as follows:

ker(ϕ)(U) = ker(ϕU : F (U)→ G (U)) [⊆ F (U)]

coker(ϕ)(U) = coker(ϕU : F (U)→ G (U))

imϕ)(U) = im(ϕU : F (U)→ G (U)) [⊆ G (U)]

Proposition 3.9. Given ϕ : F → G a morphism of sheaves on X, the kernel is a sheaf

Proof. Identity is inherited from the parent sheaf. Gluing is too, though you need to check that the glued
function f is still in the kernel. This works because ϕ(f) restricts to zero on a cover, thus is zero globally
from gluing in G . �

Remark 3.10. Since we can view each ker(F )(U) as a subgroup of F (U), we can think of ker(F )(U) as a
subsheaf of F (U).

Proposition 3.11. The image and cokernel of a sheaf morphism need not be a sheaf
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For the cokernel: Let X = C, and O be the sheaf of holomorphic function and O be the sheaf of nonzero
holomorphic functions. Consider the map ϕ with

ϕU : O(U)→ O∗(U)

f 7→ ef

we claim that the cokernel isn’t a sheaf. First, note that there is no holomorphic f such that ef = z on
C \ {0}. Otherwise, differentiating both sides yields:

ef · f ′ = 1⇒ z · f ′ = 1⇒ f ′ = 1/z

Integrating the LHS over a loop around zero yields 0, but integrating the RHS over said loop produces 2πi.
Contradiction.

Therefore, [z] 6= 0 in coker(ϕ). That is, Γ(C \ {0}, coker(ϕ)) 6= 0. But, take U1 = C \ (−∞, 0] and
U2 = C \ [0,∞). These are simply connected, so every nonzero function on them can be writting as some
ef (we can define the log: we made a branch cut!). Thus coker(ϕ)(U1), coker(ϕ)(U2) are both zero. So the
cokernel fails the identity axiom.

Similarly, this shows why the image isn’t necessarily a sheaf: we can’t glue the logs of z into a log of z on
all of C \ {0}.

So, we have all these presheaves running around (including ones we’d really like to consider: the image
and cokernel are imporant!). We would like some way to modify them into a sheaf, and it should have some
nice universal property that relates it back to the original presheaf.

Construction 3.12 (Sheafification). Given a presheaf F , there is a sheaf F+ and a morphism θ : F → F+

with the property that: for any sheaf G and any morphism ϕ : F → G , there is a unique morphism ϕ+ such
that ϕ = ϕ+ ◦ θ. The pair (F+, θ is unique up to unique isomorphism.

F F+

G

ϕ

θ

ϕ+

4. Jan 22: Sheafifcation, sheaves on a base

Recommended reading: Harthsorne II.1 (∼ p. 64), Vakil 2.4-5
Recall: last time we saw how some ker, coker of morphism of sheaves was not necessarily a sheaf. This

motivates sheafification, which will also set us up well for doing sheaves on a base, which will help us define
the structure sheaf on Spec A.

Now, for the construction of the sheafification of a presheaf. The construction is: bundle the stalk data in
a nice way. That is, make a big product of the stalks, but only allow combinations of germs that looked like
they could glue together.

F+(U) :=

{
(fp)p∈U :

for all p ∈ U , there is an open V with p ∈ V ⊆ U
and an s ∈ F (V ) such that sq = fq for all q ∈ V

}
⊆
∏
p∈U

Fp

the morphism θ is clear: θU is f 7→ (fp)p∈U . To describe ϕ+: look at the sections that glue to your (fp), look
at their images, glue them in the target, and call that the image. This is unique: in order for the diagram to
commute any other map would have to do the same thing.

Remark 4.1. Sheafification is a functor from presheaves on X to sheaves on X.

Remark 4.2. Specifically, given i : ShfX → PreX the inclusion map from sheaves on X to presheaves on X,
note that sheafification is + : PreX → ShfX . Then + is the left adjoint of i, i.e. given F a sheaf on X and
G a presheaf on X, we have the natural bijection:

HomPreX (G , i(F )) ∼= HomShfX (G +,F )
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Example 4.3 (Constant sheaves). Let X be a topological space, S a set. You get the constant presheaf by
assigning the same set to all open sets:

F (U) = S

(On nonempty sets, you can interpret this as constant functions from U to S). Gluing is a mess because of
disjoint sets, and the empty set presents problems too: all sections in F (∅) restrict to the same thing on
the empty cover. So the identity axiom says all sections on ∅ ought to be the same.

The sheafification F (U) will instead assign to U : locally constant maps from U to S. Denote this sheaf
as S.

Remark 4.4. Thinking of sheaves of abelian groups: sheafification adds the gluings that should exist but
don’t, and kills off the nonzero sections that are locally zero.

Proposition 4.5. F → F+ yields an isomorphism of stalks.

Proof. Work from the explicit description. �

Definition 4.6. We say that a map of sheaves is injective if and only if the kernel sheaf is zero.

Lemma 4.7. A map of sheaves if injective ⇐⇒ ϕ : F (U) → G (U) is injective for each U . Likewise, it is
injective ⇐⇒ it is injective on stalks.

Proof. This was done in the bijectivity proof before. �

Definition 4.8. We define the image and cokernel sheaves by taking the sheafification of the presheaves
defined above. We generally just call them im(ϕ) and coker(ϕ) and drop any + notation, and usually refer
to the presheaf versions as im(ϕ)pre, coker(ϕ)pre.

Remark 4.9. Consider a map of sheaves ϕ : F → G on X. Since we have a map impre(ϕ) → G , we
necessarily have a map im(ϕ)→ G. This map is injective: it is injective on the level of stalks (note that the
presheaf and sheafified image have the same stalks!). Thus, we can identify im(ϕ) with a subsheaf of G .

Definition 4.10. A morphism of sheaves ϕ : F → G is surjective if im(ϕ) = G .

Lemma 4.11. ϕ : F → G is surjective if and only if Fx → Gx is surjective for all points x.

Proof. ⇐: im(F ) = G means the stalks are isomorphic, hence Fx → Gx must be surjective.
⇒: we want to show that im(F ) = G . Well, the map on stalks is an isomorphism (injective and surjective

on stalks), so they are equal. �

Example 4.12. In our example with X = C, OX the sheaf of holomorphic functions, and O∗X the sheaf of
non-vansihing holomorphic functions and

OX → O∗X
f 7→ ef

we have that im(ϕ) = O∗X and coker(ϕ) = 0. This can be seen via ϕ being surjective on the level of stalks
(and correspondingly the cokernel is zero on the level of stalks).

Definition 4.13. A sequence of maps

F i−1 ϕi−1

→ F i ϕ
i

→ F i+1

is exact if at each stage, kerϕi = imϕi−1.

5. Jan 24: Sheaves on a base, affine schemes

Recommended reading: Vakil 2.5, 4.1
Time to handle an issue: sometimes we understand a sheaf really well on a nice basis. But what about

the rest? The details are sometimes unpleasant/obfuscating: it is mainly important to know that the data
of the sheaf on a suitably nice basis is enough to determine the sheaf. The construction will be reminiscent
of sheafification.
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Definition 5.1. A base of a topology is a collection of open sets {Bj}j∈J such that any open set of X can
be written as a union of Bj .

Remark 5.2. (f) ⊆ a ⇐⇒ V (f) ⊇ V (a) ⇐⇒ D(f) ⊆ D(a), so the D(f) genuinely are a basis of the
Zariski topology on Spec A.

Definition 5.3. Suppose {Bi} is a basis on X. A presheaf of sets on the base if an assignment F (Bi) for

each Bi. If Bj ⊆ Bi, we have restriction maps resBi

Bj
satisfying resBi

Bi
= id and resBi

Bk
= res

Bj

Bk
◦ resBi

Bj
.

For sheaves on a base: there are base identity and base gluing axioms:

• If B ∈ {Bi} can be written as B = ∪i∈JBi and f, g ∈ F (B) with resBBi
f = resBBi

g for all i ∈ J , then
f = g.

• If we have fi ∈ Bi for i ∈ J such that for any i, j we have resBi

Bk
fi = resBi

Bk
fj for any Bk ⊆ Bi ∩ Bj ,

then there is an f ∈ F (B) such that f |Bi
= fi for all i ∈ J .

Theorem 5.4. Suppose {Bi} a base on X, and F a sheaf of sets on this case. There is a sheaf F extending F
(F (Bi) ∼= F (Bi) with isomorphisms agreeing with restriction maps). F is unique up to unique isomorphism.

Proof. As before, F is a sheaf of compatible germs. Define the stalk of a presheaf F on a base as:

Fp = lim−→
Bi3p

F (Bi)

Define

F (U) :=

{
(fp ∈ Fp)p∈U :

for all p ∈ U , there is a B with p ∈ B ⊆ U
and an s ∈ F (B) such that sq = fq for all q ∈ B

}
⊆
∏
p∈U

Fp

We get a map F (B) → F (B) for each B, which is an isomorphism. Checking the details is similar to the
work for sheafificiation.

Note that clearly Fp
∼= Fp. �

We can finally really talk about the structure sheaf on Spec A. Consider Spec A with the Zariski topology,
and for open sets D(f) set

OSpec A(D(f)) = S−1A ∼= Af

where S = {g ∈ A : g(p) 6= 0 for all p ∈ D(f)} = {g ∈ A : V (g) ⊆ V (f)}. The restriction maps are clear
enough: if D(g) ⊆ D(f) then the restriction map

res
D(f)
D(g) : OSpec A(D(f))→ OSpec A(D(g))

is further localization. This is clearly a presheaf on a distinguished base.

Lemma 5.5. Spec A is quasi-compact (every open cover has a finite subcover).

Proof. It’s enough to show this for covers for the form {D(fi)}. Note that ∪D(fi) = D(
∑

(fi)). This will be
all of Spec A only when 1 ∈ sum(fi), in which case we get 1 = ai1fi1 + · · · + aikfik and you can just take
the corresponding cover pieces D(fi1), . . . , D(fik). �

Theorem 5.6. This assignment of OSpec A(D(f)) gives a sheaf on a distinguished base, and thus determines
a sheaf on Spec A. This sheaf is the structure sheaf on Spec A, and is referred to as OSpec A or just O if
it is clear what A is.

Proof. It’s enough to show identity and gluing on just A (if you want to show it on D(f), that’s the same as
swapping the ring out for Af , modulo some detail-checking).

• Identity axiom: Write Spec A = ∪iD(fi). Then after potentially relabeling, we can pick a finite
subcover. Write Spec A = ∪ni=1D(fi). That is, V ((f1, . . . , fn)) = ∅, i.e. (f1, . . . , fn) = A.

Suppose we have a section s ∈ OSpec A(Spec A) = A such that resSpec A
D(fi)

s = 0 ∈ Afi for each fi.

That means there is some m such that fmi s = 0 (in A) for 1 ≤ i ≤ n.
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But note that D(fi) = D(fmi ) (as fi vanishes at p if and only if fmi vanishes at p). So there are
gi such that

1 =

n∑
i=1

gif
m
i

But then:

s =

n∑
i=1

gif
m
i s =

∑
0 = 0

• Gluing: Again, being able to write 1 as a sum of these fi will let us piece things together in a nice
way.

Again, say we have some gluing data on an open cover. Pick a finite subcover {D(fi)}ni=1. Let
si ∈ OSpec A(D(fi)) so that

res
D(fi)
D(fi)∩D(fj)si = res

D(fj)

D(fi)∩D(fj)sj

noting that D(fi) ∩D(fj) = D(fifj). Identifying OSpec A(D(g)) with Ag, we get that

si =
ai

f `ii
, sj =

aj

f
`j
j

and because their restrictions are the same in Afifj , it must be that there is an mi,j such that

(aif
`j
j − ajf

`i
i )(fifj)

mi,j = 0.

Let m = maxmi,j . Then the above tells us that:

(aif
m
i )f

m+`j
j = (ajf

m
j )fm+`

i .

Now again, Spec A = ∪D(fm+`i
i ), so there exists gi ∈ A such that

1 = g1f
m+`1
1 + . . . gnf

m+`n
n

and consider the element of A given by:

s = g1a1f
m
1 + . . . gnanf

m
n

Then observe that:

fm+`i
i s = g1(a1f

m
1 )fm+`i

i + · · ·+ gn(anf
m
n )fm+`i

i

= g1f
m+`1
1 (aif

m
i ) + · · ·+ gnf

m+`n
n (aif

m
i )

= (g1f
m+`1
1 + . . . gnf

m+`n
n )aif

m
i

= aif
m
i

That is, fmi (f `ii s− ai) = 0. That is, s = ai
f
`i
i

= si on Afi , which is what we wanted.

You can use the identity axiom proved prior to show that the resulting glued object restricts to
what you want on the other elements of the a priori infinite cover. So the identity proof does need
to come first!

�

Thus, we can finally start talking about affine schemes.

6. Jan 27: Affines schemes, schemes

Recommended reading: Hartshorne II.2, Vakil 4.1-4.4

Proposition 6.1. Let A be a ring and O the structure sheaf on Spec A. For any p ∈ Spec A, the stalk
Op
∼= Ap.
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Proof. Fairly evident from the description of Ap as a direct limit identifying a bunch of subsequent localiza-
tions. For f 6∈ p, D(f) will appear in the direct limit. Lemma 2.14 can help. To be more concrete, we can
write down the map.

And (s,D(f)) ∈ Op can be sent to its image in Ap. It is surjective: any element in Ap is of the form a/g
for g 6∈ p, and so p ∈ D(g). That is, D(g) will be a neighborhood of p and a/g will be hit by the map.

It is injective: write s = a/f, t = b/g, with f, g 6∈ p. These are sections on D(f), D(g) respectively.
If their image is the same in Ap, then there is some h 6∈ p such that h(ga − fb) = 0 in A. But then
D(fgh) = D(f) ∩ D(g) ∩ D(h) is a neighborhood of p and so s, t (after restriction to D(fgh)) would have
been identified in the stalk Op. �

Now, we need some way to compare or relate sheaves on different spaces. This necessitates the direct
image and inverse image functors.

Definition 6.2. Let f : X → Y be a continuous map of topological spaces. Let F be a sheaf on X. The
direct image sheaf f∗F on Y is defined via

(f∗F )(V ) = F (f−1(V ))

for open sets V ⊆ Y . This is a functor from sheaves on X to sheaves on Y .

Definition 6.3. Let f : X → Y a continuous map of topological spaces and G a sheaf on Y . The inverse
image sheaf f−1G on X is the sheafification of the presheaf:

U 7→ lim−→
V open⊇f(U)

G (V ).

This is a functor from sheaves on Y to sheaves on X.

Definition 6.4. If i : Z → X is a subset of X with the subspace topology, then i−1F is the restriction of
F to Z, denoted by F |Z . For open sets Z this will just turn into F |Z(V ) = F (V ).

Definition 6.5. A ringed space is a pair (X,OX) of a topological space X and a sheaf of rings on X.
A morphism of ringed spaces (X,OX) → (Y,OY ) is a pair (f, f ]) of a continuous map f : X → Y and a
morphism of sheaves (of rings) f ] : OY → f∗OX .

A ringed space (X,OX) is a locally ringed space if all the stalks OX.p are local rings. A morphism of
locally ringed spaces is a morphism of ringed spaces such that the induced map on stalks f ]p : OY,f(P ) → OX,P
is a local homomorphism of local rings.

Here, a local homomorphism of local rings ϕ : A → B is a ring morphism such that ϕ−1(mB) = mA.
An isomorphism is a morphism (of ringed or locally ringed spaces respectively) with a two-sided inverse.
Equivalently, in (f, f ]) the f is a homeomorphism and the f ] is an isomorphism of sheaves.

Remark 6.6. The induced map on stalks comes from:

OY,f(P ) = lim−→
V 3p
OY (V )→ lim−→

f−1(V )

OX(f−1(V ))→ lim−→
U3p
OX(U) = OX,P

Proposition 6.7.

(a) (Spec A,OSpec A) is a locally ringed space.
(b) ϕ : A→ B a morphism of rings induces

(f, f ]) : (Spec B,OB)→ (Spec A,OA)

(c) In fact, any morphism of locally ringed spaces (Spec B,OB) → (Spec A,OA is induced by a homomor-
phism of rings.

Proof.

(a) Immediate from previous results.
(b) The map on topological spaces is f(p) = ϕ−1(p). f−1(V (a)) = V (ϕ(a)) so the map in continuous. Two

ways to see the induced morphism on structure sheaves:
• Certainly we yield a morphism on a base

OA(D(f))→ OB(D(ϕ(f)) = OB(f−1(D(f)) = f∗(OB)(D(f))

via Af → Bϕ(f) in the obvious way, and it respects restriction maps.
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• Localize at each prime to get a local homomorphism of loca rings ϕp : Aϕ−1(p)toBp. Since sheaves
are isomorphic to their sheafification, you can interpret sections on U as collections of compatible
germs, and so you can just map germs (and compatibility is preserved).

(c) Take global sections: we must have a map:

ϕ : OA(Spec A) ∼= A→ OSpec B(Spec B) ∼= B

One can show that ϕ induces all of the data of the morphism. Notably, we must have an induced
morphism on stalks: Af(p) → Bp. Due to compatibility, we must have:

A B

Af(p) Bp

ϕ

f]
p

Since f ]p is a local homomorphism, it must be that ϕ−1(p) = f(p), so that map f on points coincides

with the one induced by ϕ. Then compatibility with restriction maps will force the f ] to be induced by
ϕ as well.

�

Definition 6.8. An affine scheme is a locally ringed space (X,OX) that is isomorphic, as a locally ringed
space, to some (Spec A,OSpec A).

A scheme is a locally ringed space (X,OX) such that every point p ∈ X has an open neighborhood U
such that (U,OX |U ) is an affine scheme.

Example 6.9 (Schemes can be glued). Let X1, X2 be schemes. Let Ui ⊆ Xi be open sets. Let ϕ :
(U1,OX |U1

)→ (U2,OX |U2
) be an isomorphism of locally ringed spaces.

Then we can defined a scheme X obtained by gluing X1, X2 by identifying U1, U2 via the morphism ϕ.
The topological space is the quotient of X1 t X2 by the equivalence relation x1 ∼ ϕ(x1) for each x1 ∈ U1.
The space is endowed with the quotient topology (a set is open ⇐⇒ its preimage is open).

We get maps ij : Xj → X and the structure sheaf is defined as:

OX(V ) = {(s1, s2) : sj ∈ OXj
(i−1
j (V )), ϕ(s1|i−1

1 (V )∩U1
) = s2|i−1

2 (V )∩U2
}

that is, sections on sets that ”see” the overlap are gotten from piecing together compatible sections on (subsets
of) each X1, X2.

Example 6.10 (More concrete: the projective line). Recall that the morphisms of affine schemes are induced
by ring morphisms on the globals ections. Glue Spec C[t] and Spec C[s] along D(t) = Spec C[t, t−1] ∼=
Spec C[s, s−1] = D(s) via the following:

Spec C[s] Spec C[t]

Spec C[s, s−1] Spec C[t, t−1]

i1 i2

C[s] C[t]

C[s, s−1] C[t, t−1]t 7→s−1

This yields the projective line. We will learn about the proj construction in general next lecture.

Example 6.11 (What if you take the other transition function?). If we instead take the transition function
as t 7→ s:

Spec C[s] Spec C[t]

Spec C[s, s−1] Spec C[t, t−1]

i1 i2

C[s] C[t]

C[s, s−1] C[t, t−1]t7→s

then this glues everything away from the origin in a ”straightforward” way and we get the affine line with a
doubled origin.
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7. Jan 29: Proj, properties of schemes

Recommended reading: Hartshorne II.2 (∼ 76-77), Vakil 4.5
Now for the proj construction: we want a big class of examples from projective varieties, and we want a

big class of interesting schemes in one fell swoop. An important tool is the notion of gluing schemes from
more than two charts: the details are handled in Harthsorne exercise II.2.12. Note the cocycle condition on
triple overlaps.

Intuition from 552 remains: if S• = k[x0, . . . , xn], the proj construction yields Pnk and if S• = k[x0, . . . , xn]/(f)
where f is homogeneous, we get something ”cut out” of Pnk by the equation f = 0.

Definition 7.1 (Z-graded rings). A Z-graded ring is a ring S• = ⊕n∈ZSn where multiplication respects
grading: Sm × Sn → Sm+n. S0 is a subring and each Sn is an S0 module, and S• is an S0 module. A
Z≥0-graded ring is a Z-graded ring with no elements of negative degree. We will, in the future, use graded
ring to refer to a Z≥0 graded ring.

Definition 7.2. An element of some Sn is a homogeneous element. If it is nonzero, nonzero, the subscript
yields the degree.

Definition 7.3. An ideal I of S• is homogeneous if it is generated by homogeneous elements.

Proposition 7.4. An ideal is homogeneous if and only if it contains the degree n piece of each of its elements.

Proof. An induction proof by successively lopping off the top-degree pieces. �

Definition 7.5. In a graded ring S•, the irrelevant ideal refers to S+ := ⊕i>0Si.

Definition 7.6. As a set, Proj S is the set of all homogeneous prime ideals p that do not contain all of S+.
For a a homogeneous ideal of S, we define the subset

V (a) = {p ∈ Proj S : a ⊆ p}

For a set T , V (T ) = V ((T )). We have distinguished open sets (well, we will eventually see they’re open)
D(f) := Proj S \ V ((f)) for f homogeneous. Note that D(fg) = D(f) ∩D(g).

Lemma 7.7.

(a) For a, b homogeneous ideals in S, we have V (ab) = V (a) ∪ V (b).
(b) For any collection of homogeneous ideals {ai} of S, we have

V
(∑

ai

)
=
⋂
V (ai)

Proof. Same as before, accounting for the following: a homogeneous prime ideal p is prime ⇐⇒ for two
homogeneous a, b ∈ S, the product ab ∈ p implies a ∈ p or b ∈ p. �

Hence we can define a Zariski topology on Proj S. Now we must define a structure sheaf on this space.
The idea: on the D(f) we’d like the scheme to look like Spec ((S•)f )0. Think about the standard affine
opens on Pnk from 552, where the coordinate rings look like k[x0/xi, . . . , xn/xi].

Definition 7.8. For f ∈ S+, set

OProj S•(D(f)) = O(D(f)) = ((S•)f )0 = ”S(f)”

See Hartshorne p. 76 or Vakil Section 4.5 if you want to see more on the details on issues relating to, e.g.,
whether restriction maps will make sense.

Proposition 7.9. Let S be a graded ring.

(a) The stalk Op is isomorphic to the local ring SSp, the degree zero elements of S localized at all homo-
geneous elements not in p.

(b) We have that

D(f),O|D(f)
∼= Spec ((Sf )0)

(c) Proj S is a scheme.

It would do you well to read Exercise II.2.12 to get a sense of the work needed to glue together schemes.
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Example 7.10. For A a ring, we get PnA = Proj A[x0, . . . , xn], the projective n-space over A. For A = k
algebraically closed, you get something whose set of closed points is homeomorphic to the usual variety we
know as projective n-space from 552.

Definition 7.11. Let S be a fixed scheme. A scheme over S is a scheme X with a morphism X → S.
A morphism X → Y as schemes over S is a morphism of schemes f : X → Y that is compatible with the
morphisms to S. Then Sch(S) is the category of schemes over S. If A is a ring, Sch(A) is the category of
schemes over Spec A.

Proposition 7.12. Let k be algebraically closed. There is a natural, fully faithful (that is, bijective on hom
sets) functor t : Var(k) → Sch(k). For any variety, the topological space is homeomorphic to the set of
closed points sp(t(V )) and its sheaf of regular functions is obtained by restricting the structure sheaf of t(V )
via the homeomorphism.

Proof. See II.2, Proposition 2.6, of Harthshorne. �

Now it’s time to think of all the interesting properties of schemes we could want:

Definition 7.13 (Big list of scheme adjectives). Let X be a scheme.

(a) X is connected if its topological space is connected
(b) X is irreducible if the topological space is irreducible (all nonempty open sets dense).
(c) X is integral if all the OX(U) are integral domains
(d) X is reduced if all the OX(U) have no nilpotent elements (equivalently, by II.2.3, all the stalks have no

nonzero nilpotents).

Remark 7.14. At this point, it is useful to remark that the residue field of a point p in a scheme X is

k(p) := OX,p/mp

This lines up with our old definition: if p lies in an affine open U ∼= (Spec A,OSpec A), then k(p) = Frac(A/p).
The presentation above has the advantage of not needing an affine chart to state it. Likewise, we have a
notion of evaluation: for f ∈ OX(U), we have f(p) is the image of f under OX(U)→ OX,p/mp = k(p).

Note that for a section f ∈ OX(U), we have that fp ∈ mp ⊆ OX,p is the same as f(p) = 0.

Proposition 7.15. A scheme is integral iff it is both reduced and irreducible.

Proof. Integral certainly implies reduced. And if it’s not irreducible, then it has two nonempty disjoint sets,
yielding

OX(U1 t U2) = OX(U1)×OX(U2)

which is not integral.
Conversely: suppose X is reduced and irreducible. Suppose there are f, g ∈ OX(U) with fg = 0. Then

look at

Y = {x ∈ U : fx ∈ mx} = {x ∈ U : f(x) = 0}Z = {x ∈ U : gx ∈ mx} = {x ∈ U : g(x) = 0}

These are closed subsets (exercise II.2.16 - on HW! Note that these are defined by vanishing conditions) of
U , and Y ∪ Z = U . But X is irreducible, so U is irreducible. So, then, say Y = U . But then f is nilpotent
on any affine open in U (II.2.18a) meaning f is zero. �

Proposition 7.16. Suppose X is a reduced scheme. Let f, g ∈ Γ(X,OX). Then:

f = g ⇐⇒ f(x) = g(x) (in k(x)) for all x ∈ X

That is, evaluating the same everywhere means the two sections are the same.

Remark 7.17. What this says is that, on reduced schemes, functions are determined by their values. Recall
that the example of a setting where this is not true was Spec k[x]/(x2), which is certainly not reduced.

Proof. ⇒: this direction is obvious.
⇐: We may assume X is affine (you’ll get equality on each open affine, and then glue to finish). In that

case, X = Spec A for A with nilradical equal to (0). We have:
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A→
∏

p∈Spec A

Frac(A/p) =
∏

p∈Spec A

k(p)

(
equivalently, A ↪→

∏
p

OSpec A,p →
∏
p

k(p)

)
The kernel is the intersection of all prime ideals, which is (0). That is, the map is injective. So since f − g
maps to zero, it must be that f − g = 0, and we are done. �

Definition 7.18. A scheme is locally noetherian if it can be covered by open affine subsets Spec Ai where
each Ai is notherian. X is noetherian if it is locally noetherian and quasi-compact. Equivalently, X is
noetherian if it can be covered by a finite number of open affine subsets Spec Ai, each Ai noetherian.

Remark 7.19. X being noetherian (so basically a.c.c. on ideals) means that the topological space is
noetherian (d.c.c. on closed subsets).

8. Jan 31: More properties of schemes

Recommended reading: Harthshorne II.3 (especially Prop 3.2), Vakil 5.1-5.3
The following is an important type of proof. In our definitions of various adjectives, we often want to

say that there’s just one (affine) cover with a certain property (as that’s easy to prove). When we use this
adjective in proofs, we would like to be able to say every (affine) open cover has a certain property (as that’s
more useful to us).

These proofs tend to have a ”going down, going up” sort of process: you want that if a ring B has a property
then localizations Bf have the property, and then if a bunch of Bfi have a property and ∪iSpec Bfi = Spec B
(i.e.

∑
(fi) = 1) implies that B has that property. More formally, you’ll see this referred to as affine

communication.

Proposition 8.1. A scheme X is locally noetherian iff for every open affine U = Spec A, A is noetherian.

Proof. ⇐: this direction is clear. ⇒: Note: if B is noetherian, so is any localization Bf . Note, then, that
we have a base for the topology consisting of specs of noetherian rings, and thus our U = Spec A can be
covered by specs of noetherian rings.

So we may restrict to the following: if X = Spec A is an affine scheme covered by spectra of noetherian
rings, then A is noetherian. Let U = Spec B be an open subset of X, with B noetherian. Then for some
f ∈ A,D(f) ⊆ U we have:

Spec A

D(f) Spec B

A

Af B

Let f be the image of f in B. Then Af ∼= Bf (as both should be the coordinate ring of D(f)). Thus, Af
is noetherian. So we successfully shift to the ”∪Spec Af = Spec A and the Af have a property ⇒ A has a
property” part of the proof.

Cover X = Spec A with a finite number of these Spec Af with Af noetherian. We can do this because
affine schemes are quasicompact. Now: we want to show that if (f1, . . . , fn) = (1) and each Af is noetherian,
then A is noetherian.

Let a ⊆ A be an ideal, and let ϕi : A→ Afi . Then we claim that:

a =

n⋂
i=1

ϕ−1(ϕi(a) ·Afi)

i.e. the commonality between pulling back all the extended versions of a yields a again. The ⊆ containment
is obvious. As for ⊇: let b be an element of the intersection. Then:

ϕi(b) = ai/f
N
i ∈ Afi

with ai ∈ a and the N the same across all Afi (take the max). Then there is an M such that for any i:

fMi (fNi b− ai) = 0
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That is, fM+N
i b ∈ a for each i. Since Spec A = ∪D(fi) = ∪D(fm+n

i ) we get that there are ci such that

1 =

n∑
i=1

cif
M+N
i

for ci ∈ A. Then:

b =
∑

cif
M+N
i b ∈ a

So, we have shown a = ∩ϕ−1(ϕi(a) · Afi). Now suppose that a1 ⊆ a2 ⊆ a3 ⊆ . . . is an ascending chain of
ideals in A. Then for each 1 ≤ i ≤ n we get a chain of extensions in Afi

ϕi(a1) ·Afi ⊆ ϕ(a2) ·Afi ⊆ . . .

which must stabilize (and so their preimages stabilize). Then there is some step L at which all the preimages
on the different Afi stabilize, since there are finitely many. Hence we get that the original chain eventually
stabilizes too. �

Definition 8.2. A morphism f : X → Y of schemes is locally of finite type if there is a covering
{Vi = Spec Bi} of Y such that for each i, we have that f−1(Vi) can be covered by Ui,j = Spec Aij where
each Aij is a finitely generated Bi-algebra. (Note that we have Spec Aij → Spec Bi induced by some
Bi → Aij).

The morphism is of finite type if each f−1(Vi) can be covered by finitely many Uij .

Remark 8.3. Note: if the morphism is f : X → Spec k, being finite type means that X looks like the finite
patching of closed subsets of affine space.

Definition 8.4. A morphism f : X → Y is a finite morphism if there is a covering of Y by Vi = Spec Bi
such that f−1(Vi) ∼= Spec Ai with Ai a finitely generated Bi-module.

You will prove on your homework that having these properties on one open affine cover is the same as
having them on all open affines.

Remark 8.5. Finite morphisms have finite fibers (and are closed) and preserve the dimension of the scheme
(a notion we will eventually define, but lines up with the notion for varieties).

Finite fibers, however, does not imply a finite morphism. Spec k[t, t−1] → Spec k[t] induced by k[t] →
k[t, t−1] has finite fibers, but k[t, t−1] is not a finite k[t]-module.

Remark 8.6. If the morphism is flat, then the length of the fiber is constant. This can fail for non-flat
morphisms. A morphism is flat if the induced stalk maps fP : OY,f(P ) → OX,P is flat. ϕ : A → B is flat if
for every injective module morphism M → N you get that M ⊗A B → N ⊗A B is injective.

Example 8.7. Finite type morphisms need not have finite fibers: Spec k[x, y]→ Spec k[x] given by k[x] ↪→
k[x, y] should be thought of as projection A2 → A1. This is a finite type morphism but it does not have finite
fibers.

Definition 8.8. An open subscheme of a scheme X is a scheme U , with topological space an open subset of
X and OU = OX |U . An open immersion is a morphism f : X → Y that induces an isomorphism of X with
an open subscheme of Y .

Definition 8.9. A closed immersion if a morphism f : Y → X such that

• f(Y ) is a closet subset of X and
• f : Y → f(Y ) ⊆ Z is a homeomorphism of topological spaces
• the map f ] : OX → f∗OY is surjective

A closed subscheme of X is an equivalence class of closed immersions, where f : Y → X and f ′ : Y ′ → X
are equivalent if there is an isomorphism i : Y ′ → Y such that f ′ = f ◦ i.

Remark 8.10. Closed subschemes in general look like maps induced by A → A/I. This is Harthsorne
exercise II.3.11.
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9. Feb 03: Closed subschemes, fiber product

Recommended reading: Hartshorne II.3, Vakil 8.1, 8.3, 9.1

Example 9.1 (The go-to example of a closed subscheme). Let A be a ring, a an ideal of A. Set Y = Spec A/a
and X = Spec A. Then A→ A/a induces a closed immersion f : Y → X as schemes: f is a homeomorphism
onto V (a) and the map OX → f∗(OY ) is surjective since it’s surjective on stalks.

Any choice of b with V (a) = V (b) yields a scheme structure on the set V (a) and these can very much
be different. So there are lots of subscheme structures on this set. Every subscheme structure on a closed
subscheme of an affine scheme arises this way.

As a fun example, consider k[x] and V ((x)) = V ((x2)) and the different subscheme structures these two
ideals give you.

Example 9.2. From that example, it seems like there should be a unique ”smallest” structure, something
that eliminates the sort of ”fuzz” that V ((x2)) would give. This is indeed true: it is the reduced induced
closed subscheme structure.

In the above, with V ((x)) = V ((x2)) = V ((x3)) = . . . you want to do some sort of ”taking the radical”
type process.

Let Y be a closed subset of X. For X affine, set a = ∩p∈Y p. This is the largest ideal for which V (a) = Y .

Then the reduced induced structure on Y is the one defined by a. (Note that V (I) = V (J) ⇐⇒
√
I =
√
J).

For X a scheme in general, take an affine open cover {Ui}, consider the closed (in Ui) subset Ui ∩ Y , and
give that the reduced induced structure. You can show this glues (Example II.3.2.6 in Hartshorne).

Now! It is time for the ever-wonderful fiber product. Let us discuss its universal property. In a given
category, the fiber product of f : X → Z and g : Y → Z is the object P with morphisms p1 : P → X,
p2 : P → Y such that for any Q with maps q1 : Q → X and q2 : Q → Y with f ◦ q1 = g ◦ q2, there exists a
unique morphism u : Q→ P making the following diagram commute.

Q

P Y

X Z

q2

q1

u

p2

p1 g

f

The object P is usually denoted by X ×Z Y . The p1, p2 should be thought of as projection maps, as we
see below.

First, some examples from topology. Let X → Z be a map and {p} → Z be the inclusion of a point. Then
P = X ×Z {p} is just the fiber (any Q with the proposed maps must land in the fiber over p and so we get
the factoring).

In general, for topological spaces:

X ×Z Y = {(x, y) ∈ X × Y : f(x) = g(y)}

Let’s think about affine schemes. Translating between scheme info and ring info flips all the arrows and
we observe that flipping the arrows on this diagram... just yields the diagram and universal property of the
tensor product of rings.

Q′

A⊗C B B

A C

u

1⊗id

q2

id⊗1
q1

f

g

So it seems like fiber products should exist for affine schemes. Now we simply need to patch these together.
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Theorem 9.3. For any two schemes X → S, Y → S over a scheme S, the fiber product X ×S Y exists and
is unique up to unique isomorphism.

Proof.

• Step 1: (Handling affines)
For affine schemes, spec of the tensor product yields the fiber product. For X = Spec A, Y =
Spec B,S = Spec R, consider Spec (A⊗RB). This does not immediately have the property we want
in the category of schemes, because Q may not be affine. We’ll work through this subtlety using a
problem from your HW.

A morphism Q→ Spec (A⊗RB) is the same as a homomorphism A×RB → Γ(Q,OQ) by Exercise
II.2.4. Applying the universal property of the tensor product and the HW problem again, we get that
QtoSpec (A⊗RB) is exactly the same as a morphism to Spec B, Spec A with the desired composition
properties.

• Step 2: (Uniqueness)
The fiber product, if it exists, must be unique. For two candidate fiber products F1, F2, you’ll get
maps i : F1 → F2 and j : F2 → F1, and i ◦ j, j ◦ i being the identity will be forced by the uniqueness
part of maps to the fiber product.

• Step 3: (Gluing morphisms)
Let X,Y be arbitrary schemes. Morphisms can be described from gluing: if {Ui} is an open cover of
X, then to describe a morphism f : X → Y it’s enough to describe fi : Ui → Y and verify that the
fi, fj agree on Ui ∩ Uj .

• Step 4: (Fiber products are nice with open sets of one component)
If X,Y are schemes over S and U ⊆ X open, then p−1

1 (U) ⊆ X ×S Y is a product for U and Y .

(Maps f : Z → U and g : Z → Y yield f ′ : Z → U → X and hence you can get θ : Z → X ×S Y .
Since f(Z) ⊆ U , we can regard θ : Z → p−1

1 (U). It inherits uniqueness).

• Step 5: (If you can get a fiber using a cover on one piece, you can get it on the whole thing)
Suppose X,Y are schemes over S, and {Xi} is an open cover of X, and that Xi ×S Y . exists. Then,
X ×S Y exists.

Let p1,i : Xi ×S Y → Xi. Let Xij = Xi ∩Xj , and Uij ⊆ Xi ×X Y denote p−1
1,i (Xi,j). From Step

4, Uij , Uji are both a fiber product for Xij and Y over S. Uniqueness properties of the fiber prod-
uct give unique isomorphisms φij : Uij → Uji. These isomorphisms satisfy the gluing/compatibility

conditions of Exercise II.2.12. (Namely, ϕij = ϕ−1
ji , and the cocycle/image condition on triple inter-

sections.).

Thus, we can glue the Xi ×S Y to a scheme that we prematurely call X ×S Y . The projection
morphisms are glued from the Xi ×S Y . One can check that this is indeed the fiber product.

(For a bit more detail: given Z → X,Z → Y that yield the same map to S: we get maps
Zi = f−1(Xi) → Xi yielding maps θ : Zi → Xi ×S Y → X ×S Y . These maps glue on the Zi ∩ Zj
and yield Z → X ×S Y . Uniqueness can be checked locally, on the pieces Xi ×S Y ).

• Step 6: (Gluing on the two factors, over an affine base)
We know that fiber products exist for X,Y, S all affine. By gluing on the first factor with step 5, we
have fiber products exist for X arbitrary, Y affine, S affine. By gluing with Step 5 on the second
factor, fiber products exist for X,Y arbitrary and S affine.
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• Step 7: (Lastly, get arbitrary bases)
Let X,Y, S be arbitrary schemes, with f : X → S, g : Y → S. Let {Si} be an open affine cover of S.
Let Xi = f−1(Si), Yi = g−1(Si). We have, by step 6, that Xi ×Si

Yi exists. Observe that Xi ×Si
Yi

functions as the fiber product Xi ×S Y . If f : Z → Xi and g : Z → Y yield the same map to S, then
the image of g must land in Si. So, Xi ×S Y exists for each i, and we glue to X ×S Y .

�

10. Feb 05: Fiber product examples, base change

Recommended reading: Hartshorne II.3, Vakil 9.1-4
It’s about time we do some examples!

Example 10.1. Given a map f : X → Y and a point y ∈ Y we can take i : {y} = Spec k(y) ↪→ Y via
OX → i∗(k(y)), which will just be a skyscraper sheaf of k(y) over the point y. Then X ×Y Spec k(y) is
topologically the fiber f−1(y). The structure on it is not necessarily reduced!!

For example: let k be algebraically closed. Consider

A1
k = Spec k[t]→ Spec k[s]A1

k

induced by

k[t]← k[s]

t2 ← [ s

Then the fiber over a point a is:

Spec

(
k[t]⊗k[s]

k[s]

(s− a)

)
∼= Spec

k[t]

(t2 − a)
∼=

{
Spec k[t]

(t−
√
a)(t+

√
a)
∼= Spec (k × k) a 6= 0

Spec k[t]
(t2) a = 0

Both of these rings are 2-dimensional vector spaces over k, but one of them does not give a reduced scheme.

Example 10.2 (Reduction modulo p). We can always form the following diagram:

X(p) = X ×Spec Z Spec (Z/pZ) (p)

X Spec Z

This is the reduction modulo p of the scheme X. You can also take X(0) = X ×Spec Z (Q). In the case of,

say, Spec (Z[x]/(x4 + x3 + 1)) doing this process with p = 5 would yield Spec (F5[x]/(x4 + x3 + 1)).

Example 10.3 (Base extension in general). . Recall that a scheme over S is a scheme X with a map
f : X → S. Perhaps you’d like to consider it over some other base. Well, if you have S′ → S, then you have
the base extension:

XS′ = X ×S S′ S′

X S

One of the many usages is the following: if you consider an elliptic curve C over Q (so f : C → Spec Q),
then you could consider it over an extension L of Q by considering C ×Spec Q Spec L → Spec L and see if
your elliptic curve acquires any more closed points.

It is interesting to see what properties are preserved by base change (and in doing these
examples, we will also study properties in families).

Example 10.4 (Investigating irreducibility). Consider Spec k[x, y, t](xy − t)→ Spec k[t] induced by

k[t]→ k[x, y, t]/(xy − t)
t 7→ t



MATH 553: NOTES 21

You should think of Spec k[x, y, t]/(xy−t) as a surface in A3 and the morpism to A1 = Spec k[t] corresponding
to projection onto the third factor. Over each closed point (t − a) of the affine line, we get a fiber, which
looks like

k[x, y, t]

(xy − t)
⊗k[t]

k[t]

(t− a)
=

k[x, y]

(xy − a)
.

That as, ranging over the fibers yields a family of hyperbola. For a 6= 0, the fiber is nice and irreducible. For
a = 0, we get a union of two axes, and it is very much reducible. Note that the total space Spec k[x, y, t]/(xy−
t) is irreducible. So irreducibility does not need to be preserve by base change.

Example 10.5 (Investigating reducedness). This was already done in the k[s]→ k[t], s 7→ t2 example. You
can also look at Spec k[x, y, t]/(ty− x2)→ Spec k[t]. The fiber over (t− a) for a 6= 0 is a parabola, and then
degenerates to the doubled line x2 = 0 in Spec k[x, y] for a = 0.

11. Feb 07: Dimension, separatedness, valuative criterion

Recommended reading: Hartshorne II.4, Vakil 10.1-10.3, 12.7

Definition 11.1. The dimension of a scheme X, denote dimX, is its dimension as a topological space: the
supremum of all n such that there is a chain

Z0 ( Z1 ( · · · ( Zn

with Zi distinct, irreducible closed subsets.

Definition 11.2. Given Z ⊆ X irreducible, we have codim(Z,X) is the supremum of integers n such that
we have a chain

Z = Z0 ( Z1 ( · · · ( Zn

with Zi irreducible and closed. For Y closed subsets in general, codim(Y,X) = infZirred⊆Y codim(Z,X).

Remark 11.3. For affine schemes, Krull dimension aligns with the above notion of dimension.

Remark 11.4. No, it’s not true in general that for Y ⊆ X, that dimY + codim(Y,X) = dimX. For most
”nice” scheme we encounter this will be true, but localizations can lead to quite the messes.

Proposition 11.5. Finite morphisms are preserved under base change. That is, if f : X → Y is finite, then
f ′ : X ×Y Z → Z is finite for any Z → Y .

Proof. We can check this on affines: if B → A makes A a finite B-module, and we have B → C, then we need
A×BC is a finitely generated C-module. This is true: using the finite list of generators (generators of A over B)⊗
1 will work, by shuffling coefficients to the left as needed. �

Proposition 11.6. Finite morphisms have finite fibers.

Proof. Let f : X → Y be a finite morphism. Let Spec k(p)→ Y be the inclusion of a point. Form the fiber
product X ×Y Spec k(p)→ Spec k(p) to get the fiber over p.

Finiteness is respected by base change. So, we have a finite morphism to a point. This makes X ×Y
Spec k(p) the spec of a ring that is a finite k-module, hence Artinian. Artinian rings have Krull dimension
zero. �

Now for two more scheme properties (well, specifically, properties of a morphism between schemes) that
correspond to two well-liked topological properties. Separatedness corresponds to the Hausdorff property:
a notion of being able to separate points. Properness is meant to be analogous to the topological sense:
preimage of a compact set is compact.

But we need new notions: the Zariski topology is basically never Hausdorff, and topological properties
only capture so much of a scheme. Our definitions will reflect some of the functorial properties.
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Definition 11.7. Let f : X → Y be a morphism of schemes. We have a diagonal morphism ∆ : X → X×Y X
determined by the diagram:

X

X ×Y X X

X Y

id2

id1

∆

p2

p1 f

f

The morphism is separated if ∆ is a closed immersion. We say that X is separated over Y . A scheme is
separated if it’s separated over Spec Z.

Remark 11.8. We can now give this tidbit: when people talk about a ”variety” in the context of scheme
theory, they generally mean an integral (so irreducible and reduced) scheme that is separated and finite type
of k.

Example 11.9 (The standard example of a scheme not separated over k). Consider X, the affine line
(over k) with the origin doubled. This is Spec k[t] and Spec k[s] glued along the opens Spec k[t, t−1] and
Spec k[s, s−1] via s 7→ t.

Note that X×kX is the affine plane with doubled axes and four origins (you can think of this via intuition
on closed points, and verify with chart computations). Then the image of the diagonal map is the usual
diagonal in the affine plane part, with two of those origins. This is not closed, because all four origins are in
the closure of ∆(X) (think about limit points).

Proposition 11.10. if f : X = Spec A→ Y = Spec B is a morphism of affine schemes, then f is separated.

Proof. The fiber product X×Y X is given by Spec A⊗BA with diagonal morphism induced by A⊗BA→ A
induced by a ⊗ a′ = aa′. This is surjective, hence the diagonal map is a closed immersion (see Exercise
II.2.18(c)). �

Corollary 11.11. A morphism of schemes f : X → Y is separated if and only if the image of the diagonal
morphism is a closed subset of X ×Y X.

Proof. ⇒ is obvious. We do ⇐. Let p1 : X ×Y X be the first projection. Since p1 ◦∆ = idX , ∆ must be a
homeomorphism onto its image.

Now, we need to check that OX×YX → ∆∗OX is surjective. For P ∈ X, let U be an affine open containing
P , such tha f(U) is contained in some open affine V ⊆ Y . Then U ×V U is a neighborhood of ∆(P ) and we
know U → U ×V U is a closed immersion. That is our map of sheaves is surjective in a neighborhood of P
(we can think of as: map is surjective on stalks). �

Next is the oft-cited valuative criterion for separatedness. The idea is: separated schemes shouldn’t have
this odd sort of ”doubled point” behavior, a way to limit to two different things. Alternatively, if X is
separated, then given a morphism of a punctured curve C \ {p} → X, there should be at most one morphism
C → X extending it. Note that the line with the doubled origin very much fails this criterion.

This criterion is local, so we swap out a curve with a punctured small neighborhood (thinking in terms of
C)/germ of a curve. This corresponds roughly to a DVR. But our schemes may be fairly general, so we just
use valuation rings, and then we make the criterion relative to a morphism.

Definition 11.12. Let K be a field, and G a totally ordered abelian group. A valuation of K with values
in G is a map

v : K \ {0} → G

such that for all x, y ∈ K \ {0} we have

(1) v(xy) = v(x) + v(y)
(2) v(x+ y) ≥ min(v(x), v(y)).

The set
R = {x ∈ K : v(x) ≥ 0} ∪ {0}

is a subring of K, called the valuation ring of v. A valuation ring is an integral domain that is the valuation
ring of some valuation of its quotient field.
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Definition 11.13. A valuation is discrete if G is the integers. The valuation ring is called a discrete valuation
ring.

Example 11.14. Examples of DVRs include:

• Z(p), the integers localized at a prime
• Zp, the ring of p-adic integers
• Rings of formal power series k[[T ]]
• k[x](x).

Theorem 11.15 (Valuative criterion of separatedness). Let f : X → Y be a morphism of schemes, and X
Noetherian. Then f is separated if and only if the following condition holds (for all K,R and relevant maps).
Let K be a field and R a valuation ring with quotient field K. Let i : Spec K → Spec R be the morphism
induced by inclusion R ↪→ K. Given a morphism Spec R → Y and a morphism Spec K → X yielding the
following diagram

Spec K X

Spec R Y

i fθ

there is at most one morphism θ : Spec R→ X making the diagram commute.

Proof. See Theorem II.4.3. in Hartshorne. �

We will get more into the intuitive idea behind this criterion and its corollaries next lecture.

12. Feb 10: Valuative criterion of separatedness, properness

Recommended reading: Hartshorne II.4, Vakil 10.1-10.3, 12.7

Remark 12.1. The condition of X Noetherian is used here for niceness, namely in guaranteeing that
f : X → Y is quasi-separated. (Meaning, the diagonal morphism ∆ : X → X ×Y X is quasi-compact
(preimage of a quasi-compact is quasi-compact).

Remark 12.2. What’s the intuition here? At first, it may not seem like this setup corresponds to the
intuition about nice ways to fill in a curve and such. Let’s elucidate:

Let’s think about one of our favorite DVRs: k[x](x). This is the stalk of OSpec k[x] at the closed point (x).
So we should think of this as the ring of germs near the origin. Since k[x](x) should be thought of as the ring
of functions over its spec, Spec k[x](x) should then be thought of as an ”arbitrarily small neighborhood of

the origin” or a ”germ of the curve A1.” From this perspective, if we think in a relative sense, the fractional
field Frac(k[x](x)) = k(x) should be thought of as functions you get after puncturing the origin. That is,
Spec k(x) should be thought of as a small, punctured neighborhood.

The diagram now follows the initial goal: we have a neighborhood of a curve mapping downstairs to Y ,
and if we have a lift of the punctured neighborhood to X, there should be at most one way to fill it in (so
that it’s a lift of the non-punctured neighborhood). In general, for X an irreducible Noetherian separated
curve, and p a regular closed point on it OX,p is a DVR, so this idea extends to things that don’t just look
like pieces of A1.

Note that the fact that we’re working with schemes and bringing along all this data of the functions on our
spaces is key: set-wise, Spec k[x](x) is just two points, and Spec k(x) is just one point, and the set/topological
data is unable to tell the full story.

Corollary 12.3. Assume all schemes are noetherian.

(a) Open and closed immersions are separated
(b) A composition of two separated morphisms is separated
(c) Separated morphisms are stable under base change: f : X → Y separated implies f ′ : X ×Y Z → Z is

separated.
(d) If f : X → Y and f ′ : X ′ → Y ′ are separated with all schemes over S, then f × f ′ : X ×S X ′ → Y ×S Y ′

is separated.
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(e) f : X → Y , g : Y → Z morphisms and g ◦ f : X → Z separated implies f is separated.
(f) A morphism f : X → Y is separated if and only if Y can be covered by open Vi such that f−1(Vi)→ Vi

is separated for each i. (We say that being separated is local on the base.

Proof. These can all be proven using the valuative criterion (some also can be proven from the definition
without much tedium). To demonstrate the style of proof, we show (c). Let f : X → Y be a separated
morphism, and f ′ : X ′ = X ×Y Y ′ → Y ′ be a base change. We wish to show that f ′ is separated. Consider
the following diagram:

Spec K X ′ = X ×Y Y ′ X

Spec R Y ′ Y

i f f
θ1

θ2

Suppose there are two distinct lifts θ1, θ2 : Spec R → X ′. By composing with X ′ → X, we get two maps
τ1, τ2 : Spec R → X which must be the same because X is separated. But then the θi look the same
after composing with each of the two projections out of X ′. By the universal property of the fiber product,
θ1 = θ2. �

Corollary 12.4 (Corollary to part (f)). Affine morphisms (that is, morphisms where the preimage of an
affine is affine) are separated.

Proposition 12.5 (Valuative criterion for separatedness: DVR version). Suppose f : X → Y is a morphism
of finite type of locally Noetherian schemes. Then f is separated if and only if for any DVR R with quotient
field K with a diagram

Spec K X

Spec R Y

i fθ

there is at most one morphism Spec R→ X filling in this diagram.

Proof. Vakil 12.7.1 will have some exposition on this. �

And now for properness. In topology, a proper morphism f : X → Y is one where the preimage of a
compact set is compact. For nice spaces, this is the same thing as being locally closed: f×idZ : X×Z → Y ×Z
is closed for any topological space. Again, with some suitable niceness conditions (e.g. X,Y Hausdorff, Y
locally compact) this is the same X ×Y Z → Z being closed for all base changes. This is the property on
which the notion of a proper morphism of schemes is based on.

Definition 12.6. A morphism f : X → Y is proper if it separated of finite type, and universally closed
(see below).

Definition 12.7. A morphism f : X → Y is universally closed if it is closed and for any Z → Y the base
change f ′ : X ×Y Z → Z is closed.

Example 12.8. Let k be a field, and X = Spec k[t] the affine line over k. X is separated and finite type
over k, but not proper. The fiber product X ×k X → X is the affine plane with a projection onto one axis.
If we consider the closed set V ((xy − 1)), this is closed but it projects to the punctured affine line.

We begin to see the issue: because we lack the point at infinity, nothing is getting sent to the origin. This
suggests that the projective line has a good shot at being proper over k (and indeed it is: one can roughly
see this through the valuative criterion). In fact, any projective variety over a field is proper. (Given that
properness is meant to be an analogue of the topological notion of properness, schemes proper over k really
out to be compact).

Theorem 12.9 (Valuative criterion of properness). Let f : X → Y be a morphism of finite type, with X
noetherian. Then f is proper if and only if, for every valuation ring R with quotient field K and i : Spec K →
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Spec R induced by R ↪→ K and diagram

Spec K X

Spec R Y

i fθ

there is exactly one morphism Spec R→ X that fills in the diagram.

Corollary 12.10. Assume all schemes are noetherian.

(a) Closed immersions are proper
(b) A composition of proper morphisms is proper
(c) Proper morphisms are stable under base change
(d) If f : X → Y and f ′ : X ′ → Y ′ are proper with all schemes over S, then f × f ′ : X ×S X ′ → Y ×S Y ′ is

proper.
(e) f : X → Y , g : Y → Z morphisms and g ◦ f : X → Z proper and g separated implies f is separated.
(f) A morphism f : X → Y is proper if and only if Y can be covered by open Vi such that f−1(Vi)→ Vi is

proper for each i. (That is, being proper is local on the base).

Proof. See Corollary II.4.8 in Harthsorne. �

13. Feb 12: Projective morphisms, OX-modules

Recommended reading: Hartshorne II.4, Hartshorne II.5, Vakil 2.2
Lastly for Hartshorne chapter 4, we quickly define projective morphisms. The idea: emulating the form

of projective k-schemes, i.e. things that look like closed subschemes in Pnk = Proj k[x0, . . . , xn+1] along with
their maps to Spec k.

Recall that one can define projective n-space over any ring A. You give elements of A degree 0 the variables
xi degree 1, and take Proj A[x0, . . . , xn] := PnA. Note that you have PnA → Spec A.

Note that if A→ B is a homomorphism of rings yielding a map Spec B → Spec A, then you can form the
fiber project Pn ×Spec A Spec B and in fact:

PnB ∼= PnA ×Spec A Spec B

(This can be seen by taking charts on PnA and realizing that the tensor product will yield the fiber product
on the scheme side).

All this discussion motivates the following.

Definition 13.1. If Y is a scheme, we define projective n-space over Y , denoted PnY , to be PnZ ×Spec Z Y .

Definition 13.2. A morphism f : X → Y of schemes is projective provided that it factors as i : X → PnY
followed by a projection PnY → Y .

A morphism is quasi-projective if it factors into an open immersion j : X → X ′ followed by a projective
morphism g : X ′ → Y .

Recall that the projective line was the answer to the affine line not being proper over k. That is, projective
k-varieties have nice compactness properties over k. The most important property is the following:

Theorem 13.3. A projective morphism of noetherian schemes is proper. A quasiprojective morphism of
noetherian schemes is of finite type and separated.

Proof. See Hartshorne II.4.9. �

Chow’s lemma (X a scheme over S noetherian, then there is a scheme X ′ projective over S and surjective
S-morphism f : X ′ → X and open dense U ⊆ X such that f−1(U) ∼= U) says, roughly, that proper morphisms
can be well approximated by projective ones. You can see more on Chow’s lemma through Hartshorne exercise
II.4.10.
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Definition 13.4. An abstract variety, or just variety, is an integral (so, irreducible and reduced) separated
scheme of finite type over an algebraically closed field k. If it is proper over k, we also say it is complete.

Now: we investigate sheaves of modules. We’ve been investigating structure sheaves for a while, but we’ll
get a lot more mileage out of the sheaf framework if we start considering sheaves of modules over schemes
(i.e. sheaves of abelian groups with an appropriate scalar multiplication structure on each open set).

Definition 13.5. Let (X,OX) be a ringed space. A sheaf of OX -modules (or just ”an OX -module”) is
a sheaf of abelian groups F on X such that for each U , the group F (U) is an OX(U)-module, and the
restriction morphisms F (U) → F (V ) are compatible with module structures via OX(U) → OX(V ). That
is: for a ∈ OX(U) and m ∈ F (U) we have:

(a ·m)|V = (a)|V · (m)|V

A morphism of OX -modules is a morphism of sheaves such that for each open U , the map F (U)→ G (U) is
a morphism of OX(U)-modules.

Remark 13.6. We especially like quasi-coherent and coherent sheaves, which are OX -modules which play
the role of analogue of modules and finitely generated modules over a ring, respectively.

Example 13.7. Prototypical example: Consider Spec k[x, y], the affine plane. We can think of the x-axis in
here, i.e. where y = 0. That is, we have the closed subscheme Spec k[x]→ Spec k[x, y], induced by viewing
the vanishing set as V ((y)) (if we viewed it as V ((y2)) that would yield a different scheme structure), the
vanishing of the ideal (y). We can think of a sheaf (of abelian groups) that, on each open U , keeps track of
the ideal defining the portion of the x-axis in that set. That is:

F (Spec k[x, y]) = (y)k[x, y], F (D(f)) = (y)k[x, y]f

Note that on each open, the ideal F (U) has the structure of being an OX(U) = Af module. We will see it
is an example of a sheaf of ideals.

Some properties:

• The kernel, cokernel, and image of a morphism of OX -modules is again an OX -module (and we do
mean the sheafified versions here!)

• If you have a subsheaf of an OX -module F , the quotient F/F ′ is again an OX -module
• Direct sums, direct products, direct limits, inverse limits of OX -modules are OX -modules
• If F ,G are two OX -modules we may define the group of morphisms HomOX

(F ,G ) as the group of
OX morphisms F → G .

• In fact, we can think of this sheaf-wise: we can form a sheaf H om(F ,G ) via:

U 7→ HomOX |U (F |U ,G |U )

This is also an OX -module.
• The tensor product of two modules F ⊗OX

G is the sheafification of the presheaf

U 7→ F (U)⊗OX(U) G (U)

If the OX is understood you may just see F ⊗ G . Note: the sheafifcation step is important!
– (When we get to Serre twists, we will have a nice example of why you need this sheafification!)
– (If you just want an example of the general phenomena of how taking tensor products on opens

doesn’t necessarily yield a sheaf: consider the constant sheaf Z on a topological space X with
multiple components. Form a new presheaf by taking U 7→ Γ(U,Z) ⊗Z Γ(U,Z). You can show
that this is not a sheaf.)

Definition 13.8. A sheaf of ideals on X is a sheaf of modules I that is a subsheaf of OX . That is, I (U)
is an ideal of OX(U) on each U .
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14. Feb 14: Locally free sheaves, vector bundle motivation

Recommended reading: Hartshorne II.5, Vakil 13.1

Definition 14.1. An OX -module is free if it is isomorphic to the direct sum of copies of OX . It is locally
free if X can be covered by open U such that F |U is a free OX |U -module. You can then define the rank of
a sheaf F on such a set.

Remark 14.2. If X is connected, the rank must be constant.

Definition 14.3. An invertible sheaf is a sheaf of rank one everywhere.

Remark 14.4. We will see why this should be thought of as ”invertible” later.

The motivation for studying locally free sheaves comes from vector bundles. For the purposes of discussing
motivation: it is a little easier to consider things in the topological scenario (on the scheme side: thinking
about closed points yields the same sort of picture, though the full details are explored in Hartshorne Exercise
II.5.18)

A rank n vector bundle on a manifold M is a map π : B → M such that each fiber π−1(x) has the
structure of an n-dimensional real vector space, and for each point p ∈ X we have some U 3 p such that we
can trivialize the bundle:

φU : U × Rn → π−1(U)

so that the following diagram commutes (and is an isomorphism of vector spaces over each x ∈ U).

π−1(U) U × Rn

U

∼=

π
proj onto 1st factor

A section over U is a map s : U → B such that π ◦ s = id. On a trivialization, we see that this is the data
of U → U × Rn that looks like the identity on the first part and an n-tuple of functions to R on the second
part. That is, it looks like an element of OX(U)⊕n. So the sheaf of sections F of this vector bundle satisfies:

F |U ∼= (OX |U )⊕n

On overlaps of Ui, Uj open in X, we have:

φ−1
Uj
◦ φUi

: (Ui ∩ Uj)× Rn → (Ui ∩ Uj)× Rn

and the map is given by some element Ti,j of GLn(O(Ui ∩ Uj)) on the second factor, i.e. they look like
Ti,j : U ∩ V → GLn(R). These are the transition functions, and they determine the vector bundle.

Now, suppose we have the setup of a vector bundle and trivializations on an open cover {Ui}. Consider a
section s ∈ F (Ui ∩Uj), which can be interpreted as si an n-tuple of functions by viewing Ui ∩Uj as a subset
of Ui. The various expressions si and sj are related by those same transition functions:

Tijsi = sj

Conversely, if you have a locally free sheaf F on M of rank n, and trivializations on neighborhoods Ui so
that F |Ui

∼= O⊕nUi
, we have transition functions Ti,j ∈ GLn(O(Ui ∩ Uj)) on the overlaps.

That is to say: the data of a locally free sheaf of rank n is equivalent to the data of a vector bundle
of rank n. In algebraic geometry, we often like to study the sheaf of sections over the vector bundle. This
framework has some nice features: for one: locally free sheaves slot into the category of coherent sheaves,
which are nice to study. Two: this tends to be quicker to define than geometric vector bundles. Three: it
suits the modern perspective of studying functions (sections) instead of just spaces (the bundle).

15. Feb 17: Direct image, inverse image, quasicoherence, coherence

Recommended reading: Hartshorne II.5, Vakil 13.1-13.5, 16.1-16.3

Construction 15.1. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. If F is a OX -module,
then f∗F is an f∗OX module. Because f yields a map f ] : OY → f∗OX , we obtain an OY -module structure
on f∗F . This is the direct image of F by f .
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If we have direct images, we want some way to turn OY modules into OX -modules via the data of a
morphism X → Y . To do this, we need to dive into the inverse image functor. Namely, its important adjoint
property.

Recall that for f : X → Y a continuous map of topological spaces and G a sheaf on Y , the inverse image
sheaf f−1G is defined as the sheafification of the presheaf

U ⊆ X 7→ lim−→
V⊇f(U)

G (V ) := f−1G pre

Proposition 15.2 (Hartshorne Exercise II.1.18). The inverse image and direct image functors are adjoint.
Namely: given a continuous map f : X → Y of topological spaces and F a sheaf on X and G a sheaf on Y ,
we have:

HomX(f−1G ,F ) = HomY (G , f∗F )

Proof. We’ll give two maps between these hom sets that are inverses. In dealing with f−1G , we will use that
inclusion of sheaves into presheaves and sheafification are adjoint functors. That is, HomPreX (G , i(F )) ∼=
HomShfX (G +,F ).

• Suppose we have a σ : HomX(f−1G ,F ). That is, we have

σU : f−1G (U) = lim−→
V⊇f(U)

G (V )→ F (U)

Then for V open ⊆ Y we can define

G (V )→ lim−→
V ′⊇V

G (V )
σf−1(V )→ F (f−1(V )) = f∗F (V )

This yields a map G → f∗F
• Suppose we have τ ∈ HomY (G , f∗F ). That is, on V open ⊆ Y we have

τV : G (V )→ f∗F (V ) = F (f−1(V ))

Let U in X be open. For any V open ⊇ f(U), we have:

G (V )
τ→ F (f−1(V ))

res
f−1(V )
U→ F (U)

And compatibility of the τ means that we get a map lim−→V⊇f(U)
G (V ) → F (U), i.e. a map

f−1G pre(U)→ F (U) and thus a map f−1G → F .

One can check that these two assignments are inverses. �

Construction 15.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spacs and G an OY -module.
Then f−1G is an f−1OY module. Now, because we have a morphism f ] : OY → f∗OX , we also have a map
f−1OY → OX . So we add in the OX -module structure in the usual way: tensor product! We define:

f∗G := f−1G ⊗f−1OY
OX

(by this we mean take the presheaf given by tensoring on opens, and then sheafify). This indeed has the
structure of an OX -module.

Proposition 15.4. f∗, f
∗ are adjoint:

HomOX
(f∗G ,F ) = HomOY

(G , f∗F )

The next part is about a class of OX -modules we particularly like. There are two ways to do it: in practice,
we just use the following. Let A be a ring and M an A-module. We have the sheaf associated to M on

Spec A, denoted by M̃ . Its space of sections can be defined on distinguished opens D(f) as:

Γ(D(f), M̃) = Mf

As usual, one has to worry if the restriction maps make sense, if you have D(g) ⊆ D(f), but the details of
checking that are similar to checking them for the structure sheaf of Spec A or Proj S.

Hartshorne does it as he does the construction of the structure sheaf OX : the stalks of the would-be M̃

should be Mp, and then the sheaf M̃ , on open sets U , look like elements (mp)p∈U ∈
∏

p∈U Mp such that the
mp have some compatibility conditions. See the definition on page 110 of Hartshorne for more details.
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Proposition 15.5. Let A be a ring, and M an A-module. Then:

(a) M̃ is an OX module.

(b) The stalk (M̃)p is isomorphic to Mp.

Proof. Proposition II.5.1 in Hartshorne. �

Proposition 15.6. Let A be a ring, and X = Spec A. Let A→ B a ring homomorphism, and f : Spec B →
Spec A be the induced morphism on ringed spaces. Then:

(a) The map M 7→ M̃ is an exact and fully faithful functor from the category of A-modules to the category
of OX -modules.

(b) If M,N are two A-modules, then M̃ ⊗A N ∼= M̃ ⊗OX
Ñ

(c) Given a family {Mi} of A-modules, we have ⊕̃Mi
∼= ⊕M̃i.

(d) For any B-module N , we have that f∗(Ñ) = (̃AN), where AN means N considered as an A-module.

(e) For an A-module M , we have f∗(M̃) ∼= M̃ ⊗A B.

Proof. Many of these are straightforward formality exercises. For (a): note that localization is exact and
exactness of sequences sheaves can be tested on stalks, so the functor is exact. To show •̃ : HomA(M,N)→
HomOX

(M̃, Ñ) is an isomorphism, note that by taking global sections you get a map HomOX
(M̃, Ñ) →

HomA(M,N), which will be the inverse. �

Definition 15.7. Let (X,OX) be a scheme. An OX -module F is quasi-coherent if X can be covered by
open affine subsets Ui = Spec Ai such that for each piece of the cover, there is an Ai-module Mi such that

F |Ui
∼= M̃i. We say that F is coherent if each Mi can be taken to be a finitely generated Ai-module.

Remark 15.8. One generally only studies coherent sheaves on noetherian schemes, as their behavior can be
quite bad on non-noetherian schemes. Namely, we want the following property: finitely generated modules
M over noetherian rings are noetherian modules, meaning any submodule of M is finitely generated. This is
a property that you will want all the time when you are trying to study coherent sheaves.

Remark 15.9. Note that locally free OX -modules of finite rank are coherent. This is nice, because while the
category of locally free sheaves on X is not abelian, we will see that the slight enlargement to the category
of coherent sheaves is abelian.

Example 15.10. Here is an example of how finitely generated modules over a ring R can have non-finitely
generated submodules if R is not noetherian. Note that R = k[x1, x2, . . . ] is a finitely generated R-module,
but (x1, x2, . . . , ) is not a finitely generated R-module.

Example 15.11 (An OX -module that is not qcoh). Consider Spec k[t], and let F be the skyscraper sheaf
supported at the origin (t) with group k(t). This has an OSpec k[t]-module structure, but it is not quasico-
herent.

Proposition 15.12. Let X be a scheme. An OX -module F is quasi-coherent if and only if for every open

affine U = Spec A of X, there is an A-module M such that F |U ∼= M̃ . If X is noetherian, the analogous
statement holds for F quasi-coherent, with the extra condition that the M are finitely generated over their
respective A.

Proof. See Proposition II.5.4 in Hartshorne. �

Corollary 15.13. Let A be a ring and X = Spec A. The functor M 7→ M̃ gives an equivalence of categories
between A modules and the category of quasi-coherent OX -modules. Its inverse is the functor F 7→ Γ(X,F ).

If A is noetherian, M 7→ M̃ gives an equivalence of categories between the category of finitely generated
A-modules and the category of coherent OX -modules.

Proof. The prior proposition makes sure that all quasicoherent F look like ˜Γ(X,F ) on X and so F 7→
Γ(X,F ) is an inverse. �
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16. Feb 19: More on quasicoherent, coherent sheaves

Recommended reading: Hartshorne II.5, Vakil 13.4-13.5, 14.1, 15.1

Proposition 16.1. Let X be an affine scheme, and 0 → F ′ → F → F ′′ → 0. an exact sequence of
OX -modules, and assume that F ′ is quasicoherent. Then

0→ Γ(X,F ′)→ Γ(X,F )→ Γ(X,F ′′)→ 0

Proof. We showed Γ is left-exact, so we just need to show the surjectivity of Γ(X,F ) → Γ(X,F ′′). This
uses that quasicoherent sheaves have nice lifting properties: emulating the relationship between M,Mf , a
section s of a quasicoherent sheaf on D(f) has the property that you can find some n such that fns is a
global section. Full details are in Proposition II.5.6 of Hartshorne. �

Proposition 16.2. Let X be a scheme. The kernel, cokernel, and image of any morphism of quasicoherent
sheaves are quasicoherent. Any extension of quasicoherent sheaves is quasicoherent. If X is noetherian, the
same is true for coherent sheaves.

Proof. All these criteria are local, so we may assume X is affine. The fact that kernels, cokernels, images are

quasicoherent follows from M 7→ M̃ being fully faithful to qcoh sheaves (or coh for X Noetherian).
The nontrivial part is showing extensions play nicely. Take global sections to get:

0 M̃ ′ M̃ M̃ ′′ 0

0 F ′ F F ′′ 0

the two outer left and two outer right columns are isomorphisms since F ′,F ′′ are quasicoherent. So the
5-lemma says the middle one is quasicoherent. Similarly for coherent (M ′,M ′′ finitely generated implies M
finitely generated). �

Proposition 16.3. Let f : X → Y be a morphism of schemes.

(a) If G is a quasicoherent OY -module then f∗G is a quasicoherent OX module
(b) If X,Y noetherian and G coherent, then f∗G is coherent
(c) If either X noetherian or f quasi-compact and separated, then F quasicoherent on X implies that f∗F

is quasicoherent on Y .

Proof. Note that (a), (b) are local (on both X,Y ) and so we can reduce to the case of Spec A → Spec B.
Then it follows from Proposition 15.6. For (c), the property is only local on Y , so you can only assume Y is
affine. See Hartshorne Proposition II.5.8 for the full proof. �

Remark 16.4. If X,Y are noetherian, it is not necessarily true that f∗ of a coherent sheaf is coherent. It
is true if f is finite or projective. Or, most generally, proper.

Definition 16.5. Let Y be a closed subscheme of a scheme X. Let i : Y → X be the inclusion morphism.
The ideal sheaf of Y , denoted I , is the kernel of the morphism i] : OX → i∗OY .

Remark 16.6. Consider the map Spec A/I → Spec A induced by A→ I. By Proposition 15.6, we get that

i∗OSpec A/I is Ã/I considered as an A-module. Then our map i] : OX → i∗OY is the map Ã→ Ã/I. Then

the map i] has kernel Ĩ. So we see in this simple case that the construction does line up with what it should
be.

Proposition 16.7. Let X be a scheme. There is a one-to-one correspondence between closed subschemes Y
of X and quasicoherent ideal sheaves.

Corollary 16.8. If X = Spec A is an affine scheme, there is a one-to-one correspondence between ideals a
in A and closed subschemes Y of X, given by a 7→ image of Spec A/a in X. Notably, every closed subscheme
of an affine scheme is affine.

Proof. Follows from the equivalence of categories of A-modules and quasicoherent sheaves on Spec A. �
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Now that we’ve gotten a good sense of quasicoherent and coherent sheaves on affine things, let’s study
them on something a little more complicated: projective space! And projective varieties. We will define an
important class of modules now.

Construction 16.9. For S a graded ring, we have a notion of a graded module. A graded S-module M is
an S-module M with a decomposition M = ⊕d∈ZMd such that Sd ·Me ⊆ Md+e. For any graded S-module
M and n ∈ Z we have the twisted modules M(n) where

M(n)d = Md+n

That is, M(n) is M but with the degree assignments shifted. M(n) is also a graded S-module.

Construction 16.10. Let S be a graded ring and M a graded S-module. Then we can construct an OProj S

module from it, which we will denote M̃ . It is defined on distinguished opens D(f) with f ∈ S+ as follows:

M̃(D(f)) = (Mf )0

That is, it assigns to D(f)) the degree zero elements of (Mf ).

Proposition 16.11. Let S be a graded ring and M a graded S-module.

(a) For any p ∈ Proj S, (M̃)p = M(p), the degree zero elements of M localized at p.
(b) For any homogeneous f+, recall that D(f) is isomorphic to Spec (Sf )0 as schemes. With this in mind,

we have that as OD(f) = OSpec (Sf )0 modules that

M̃ |D(f)
∼= ˜((Mf )0) =

[
M̃(f)

]
(c) M̃ is a quasicoherent sheaf. If S is noetherian and M is finitely generated, then M̃ is coherent.

Definition 16.12. Let S be a graded ring and X = Proj S. For any n ∈ Z we have

OX(n) := S̃(n)

OX(1) is called Serre’s twisting sheaf. You may see the OX(n) referred to as the Serre twists.

Definition 16.13. For X = Proj S and F an OX -module, we set

F ⊗OX
OX(n)

Proposition 16.14. Let S be a graded ring and X = Proj S. Assume that S is generated by S1 as an
S0-algebra.

(a) OX(n) is locally free
(b) For any graded S-module M , we have that

M̃(n) ∼= M̃(n)

that is, twisting and applying the ∼ construction can be done in either order. In particular, OX(n) ⊗
OX(m) ∼= OX(n+m).

Proof. (a) It is most instructive to do this for Pnk = Proj k[x0, . . . , xn]. Pn is covered by affine opens
D(xi) ∼= Spec k[x0

xi
, . . . , xn

xi
] ∼= An. By the previous proposition, we have that

OPn(m)|D(xi)
∼= ˜((k[x0, . . . , xn](m))xi

)0 = ˜(k[x0, . . . , xn]xi
)m

Because quasicoherent modules over affine schemes Spec A are equivalent to modules over A, we just
need to give a module isomorphism

(k[x0, . . . , xn]xi
)0

∼=−→ (k[x0, . . . , xn]xi
)m

Multiplication by xmi yields such an isomorphism. Note that the map and its inverse both make sense
because xi is invertible. Since Pnk is covered by the D(xi), this shows that OPn(m) is locally free.

In the general scenario, one picks f ∈ S1 and needs so show that (Sf )0
∼= (Sf )m are isomorphic as

Sf -modules. Again, multiplication by fm works. Since S is generated by S1 as an S0-algebra, the D(f)
cover S0.
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(b) Follows from (̃M ⊗S N) ∼= M̃ ⊗OX
Ñ . Namely we can check this on affines by (M ⊗S N)(f) = M(f) ⊗

S(f)N(f). Note that deg f = 1 is crucial: things can get messed up if deg f > 1 (try working out an
example!)

�

17. Feb 21: Modules on Proj

Recommended reading: Hartshorne II.5, Vakil 14.1, 15.1-15.3
As discussed prior, a locally free sheaf on X can be determined by its transition functions. That is, given

the knowledge that F |Ui
∼= O⊕nUi

then the bundle is determined by the functions GLn(Ui∩Uj) on the Ui∩Uj .
Let us determine the transition functions on OPn(d). Write Pn = Proj k[x0, . . . , xn]. We have trivializable

neighborhoods D(xi), D(xj) with their intersection D(xi), D(xj)

D(xi) D(xj)

D(xixj) = D(xi) ∩D(xj)

and we need to see how section ofOPn(d) changes between the two trivializations. Recall thatOPn(d)(D(f)) =
(k[x0, . . . , xn]f )d.

OPn(D(xi)) = (k[x0, . . . , xn]xi
)0 OPn(d)(D(xi)) OPn(d)(D(xj)) (k[x0, . . . , xn]xj

)0

OPn(D(xixj)) = (k[x0, . . . , xn]xi
)0 OPn(d)(D(xixj)) OPn(d)(D(xixj)) (k[x0, . . . , xn]xixj

)0

×xd
i

×xd
j

×xd
i

×
(

xi
xj

)d

×xd
j

Proposition 17.1. Let k = C. The global sections of OPn(d) is isomorphic to the space of degree d
homogeneous polynomials in x0, . . . , xn.

Proof. Giving a global section is the same as giving as an element of Γ(D(xi),OPn(d)) for each i such that
they agree on the overlaps. That is, this is the same as giving a choice of fi ∈ k[x0

xi
, . . . , xn

xi
] for each i such

that fi satisfies fj = (xi/xj)
dfi.

We see that a necessary condition is that fi(
x0

xi
, . . . , xn

xi
) must be degree ≤ d in order for (xi/xj)

dfi to even

be a valid element of Γ(D(xj),OPn(d)). This is in fact sufficient. Further, a global section is determined by
any one of the fi

By homogenizing, we can get f̃i a homogeneous degree d polynomial corresponding to this section. Dividing
through by xdi gives the representative for it in any given D(xi).

One can also see this by just viewing all the Γ(S̃(d), D(xi)) = (k[x0, . . . , xn]xi
)d in k(x0, . . . , xn) and

intersecting. �

Remark 17.2. Note that this gives us an example of why you need sheafification in the tensor product of
OX modules. After all:

dimk

(
Γ(Pn,OPn(1))⊗Γ(Pn,OPn ) Γ(Pn,OPn(−1)

)
= dimk (Γ(Pn,OPn(1))⊗k Γ(Pn,OPn(−1))

= (n+ 1) · 0
= 0
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Meanwhile:

dimk(Γ(Pn,OPn(1)⊗OPn OPn(−1))) = dimk(Γ(Pn,OPn(0)))

= dimk(Γ(Pn,OPn))

= dimk k

= 1

If the sheafification step were not necessary, these numbers would be the same.

Example 17.3 (A more concrete example: the tautological bundle). Let’s think about algebraic sets/closed
points for a bit. Interpret Pn as lines through the origin in Cn+1. We have the tautological bundle in the
manifolds sense:

T = {(p, v) : v ∈< p >} ⊆ Pn × Cn+1

This is a line bundle: it continuously assigns a line to each point of Pn. On Ui = xi 6= 0, the points look like:([
x0

xi
, . . . ,

xn
xi

]
, c

(
x0

xi
, . . . ,

xn
xi

))
So we have this coordinate c that allows us to trivialize:

Ui × C→ T |Ui([
x0

xi
, . . . ,

xn
xi

]
, c

)
7→
([

x0

xi
, . . . ,

xn
xi

]
, c

(
x0

xi
, . . . ,

xn
xi

))
What if we have a point where both xi, xj are nonzero? Then let’s write a point in the standardized form of
both coordinate sets to see the transition functions.([

x0

xi
, . . . ,

xn
xi

]
, c

)
7→
([

x0

xi
, . . . ,

xn
xi

]
, c

(
x0

xi
, . . . ,

xn
xi

))
=

([
x0

xj
, . . . ,

xn
xj

]
, c

(
xj
xi

)(
x0

xj
, . . . ,

xn
xj

))
← [
([

x0

xj
, . . . ,

xn
xj

]
, c

(
xj
xi

))
Since the transition function is ( xi

xj
)−1, we see that the tautological bundle is isomorphic to OPn(−1).

Definition 17.4. Let S be a graded ring, and X = Proj S. Let F be an OX -module. We can define the
graded S-module associated to F as:

Γ∗(F ) =
⊕
n∈Z

Γ(X,F (n))

It has the structure of a graded S-module: if s ∈ Sd, then s determines a global section s ∈ Γ(X,OX(d)).
For t ∈ Γ(X,F (n)) we have the product s · t ∈ Γ(X,F (n+ d)) via the tensor product s⊗ t and using that

F (n)⊗OX(d) ∼= F (n+ d) = F ⊗OX(n+ d)

Example 17.5. If S = k[x0, . . . , xn] and X = Proj S and F = OX(d) = S̃(d) then note that the Γ∗(F )
returns back S(d).

Proposition 17.6. Let X = Proj nA. Then Γ∗(OX) ∼= S.

18. Feb 24: Modules on Proj, very ample sheaves, starting divisors

Recommended reading: Hartshorne II.5, II.6. Vakil 15.1-15.4, 16.1-16.4

Proposition 18.1. Let S be a graded ring, which is finitely generated by S1 as an S0 algebra. Set X =
Proj S. Let F be a quasi-coherent sheaf on X (not necessarily graded!). Then there is a natural isomorphism

β : Γ̃∗(F )→ F .
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Proof. First we define β. Let f ∈ S1. Since S is generated by a finite number of the S1 elements, just need
to give the map over D(f). Note that D(f) is affine, so defined by the map on D(f). We consider sections
of Γ∗(F ) of the form m/fd where m ∈ Γ(X,F (d)) for some d ≥ 0. We can think of f−d as a section of
OX(−d) defined over D(f). Then we can think of m⊗ f−d as a section of F ∼= F (d)⊗OX(−d) over D(f).
This defines β.

One can show this is an isomorphism (see Hartshorne Proposition II.5.15). �

Corollary 18.2. Let A be a ring.

(a) If Y is a closed subscheme of PnA, there exists a homogeneous ideal I ⊆ S = A[x0, . . . , xn] such that Y is
the closed subscheme determined by the ideal I. That is, it looks like

Proj S/I → Proj S

Proof. Y defines an ideal sheaf IY , a subsheaf of OX . Twisting is exact (invertible process) and global
sections is left-exact, so we get that Γ∗(IY ) is a submodule of Γ∗(OX) ∼= S. Hence Γ∗(IY ) corresponds to

a homogeneous ideal of S, call it I. Since IY is quasicoherent, we have that IY
∼= Γ̃∗(IY ) = Ĩ. Hence Y is

the subscheme determined by I.
�

Definition 18.3. For Y a scheme, the twisting sheaf O(1) on PrY is g∗(O(1)) where g : PrY → PrZ is the
natural map (note PrY = PrZ ⊗Z Y ). If Y = Spec A this returns the old definition of O(1).

Definition 18.4. If X is a scheme over Y , an invertible sheaf L on X is very ample relative to Y if there
is an immersion i : X → PrY for some r such that i∗(O(1)) ∼= L . A morphism i : X → Z if it gives an iso of
X with an open subscheme of a closed subscheme of Z.

Remark 18.5. Roughly speaking, very ample line bundles are line bundles with a lot of sections: enough that
they can be used to define an embedding of a scheme into some projective space. Consider P1

k = Proj k[s, t].
Then consider OP1(3), which has global sections 〈s3, s2t, st2, t3〉. We can use these to write a map:

f : P1 → P3

[s, t] 7→ [s3, s2t, st2, t3]

which embeds P1 as a twisted cubic in P3. Then it turns out that f∗(OP3(1)) = OP1(3), showing that OP1(3)
is very ample. This is the embedding of P1 using the complete linear series H0(P1,OP1(3)) = Γ(P1,OP1(3)),
also denoted by |OP1(3)|.

Definition 18.6. Let X be a scheme, and F an OX -module. We say that F is generated by global sections
if there is a collection of global sections {si}i∈I with si ∈ Γ(X,F ) such that for each x, the images of si in
the stalk Fx generated that stalk as an Ox-module.

Equivalently, this means you can write a surjective Ox-module map

O⊕IX → F

and realize F as a quotient of a free module.

Example 18.7. A quasicoherent sheaf on an affine scheme is generated by global sections.

Example 18.8. The OPn(d) are globally generated (work on affines to show the morphsms of sheaves is
surjective).

Theorem 18.9 (Serre). Let X be projective scheme over noetherian ring A. Let L be a very ample invertible
sheaf on X and F a coherent OX -module. Then there is an integer n0 such that for all n ≥ n0, the sheaf
F ⊗L ⊗n can be generated by a finite number of global sections.

Proof. See Hartshorne Theorem II.5.17. �

We now turn our attention to divisors, which are a great tool for studying the geometry of a scheme.
The divisor class group is a useful invariant of a variety as well. We start with Weil divisors, which are
nice/intuitive geometrically, but there are conditions on when you can define them. Cartier divisors will be
definable more broadly. And then we will see how this info relates to invertible sheaves.
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Definition 18.10. A generic point η of a scheme X is one such that {η} = X, topologically. Note that any
nonempty open set must contain η.

Remark 18.11. If X is integral, then there is a unique generic point, and is it obtained by taking any affine
open Spec A in X and taking the zero ideal in Spec A. We will restrict our attention to integral schemes in
this lecture.

Definition 18.12. The function field of an integral scheme X, denoted K(X), is the field of rational
functions on X. Note that since every open set contains the generic point η, we get that OX,η = K(X). Note
that K(X) = K(U) for any affine open U in X.

Remark 18.13. In the non-integral case we need to be a little more careful about the construction– we will
see this when we deal with Cartier divisors.

Example 18.14. Note that for An = Spec k[x1, . . . , xn], we have K(An) = k(x1, . . . , xn). For Pn =
Proj k[x0, . . . , xn], we have that

K(Pn) = k(x0, . . . , xn)0
∼= k(x1, . . . , xn)

Definition 18.15. A regular local ring is a Noetherian local ring where dimA/m m/m2 = dimA. Alterna-
tively, m has a minimal generating set of dimA elements.

If A has Krull dimension one, this is precisely the same as being a DVR. Which means we have all sorts
of equivalent characterizations (local ring, PID, not a field)

Definition 18.16. We say a scheme X is regular in codimension one (or nonsingular in codimension
one) if every local ring OX,x of dimension one is regular. You should think of this as the singular locus
having codimension at least 2.

Note: If Y is a closed irreducible subspace of X, with y ∈ Y the generic point of Y , then

codim(Y,X) = dim(OX,y)

coming from the equivalence between prime ideals of the latter and closed irreducible subspaces of X con-
taining Y .

Example 18.17. As a quick example, observe that in A3 = Spec k[x, y, z], we can take the hypersurface
Y = {y = 0}. This is given by the data:

Y → Spec k[x, y, z]

k[x, y, z]

(y)
←[ k[x, y, z]

the generic point (0) ⊆ k[x.y, z]/(y) is mapped to the ideal (y) ∈ Spec k[x, y, z] and we see that

codim(Y,Spec k[x, y, z]) = 1 = dim k[x, y, z](y)

19. Feb 26: Divisors

Recommended reading: Hartshorne II.6, Vakil 14.2

Definition 19.1. Hartshorne refers throughout the chapter to the following condition, which is denoted
as just (∗). (∗) is the property that X is noetherian, integral, and separated scheme which is regular in
codimension one.

Definition 19.2. Let X satisfy (∗). A prime divisor on X is a closed integral subscheme Y of codimension
one.

Definition 19.3. A Weil divisor is an element of the free abelian group Div X, which is generated by
prime divisors. That is, elements of Div X look like D =

∑
niYi where the Yi are prime divisors, and only

finitely many ni are nonzero. If all the ni ≥ 0, then we say D is effective. (That is, effective divisors are
things that look like actual subschemes).



36 MORELAND

Definition 19.4 (Valuation associated to a prime divisor). Let Y be a prime divisor, and ηY the generic
point of Y . The local ring OηY ,X is a DVR with quotient field K, the function field of X.

The corresponding discrete valuation is denoted vY . X is separated so Y is uniquely determined by its
valuation (this is the content of Hartshorne exercise II.4.5). Let f ∈ K∗ be a nonzero rational function. Then
vY (f) is an integer. If it is zero, f is said to have a zero along Y . If it is negative, f is said to have a pole
along Y (of order −vY (f)).

Definition 19.5. Suppose X satisfies (∗), and let f ∈ K(X)∗ be a nonzero rational function. Then vY (f) = 0
for all but finitely many prime divisors.

Proof. Let U = Spec A be an open affine on which f is regular. Z = X \ U . Since X is Noetherian, Z
contains at most finitely many prime divisors (use d.c.c. on closed subsets and quotient ideals to remove
pieces). All other prime divisors must meet U .

So now we need to show there are only finitely many prime divisors Y of U such that vY (f) 6= 0. We
necessarily have that vY (f) ≥ 0 since f is regular on U . And vY (f) > 0 only when Y is contained in fA,
the ideal generated by f . There are only finitely many such closed irreducible subsets within Spec A/fA .
(Descending chain condition on Noetherian topological spaces). �

Example 19.6. Consider f = x0

xi
which is a rational function on Pnk . From the proof above, we see that we

only need to consider prime divisors in V (x1) for poles. For zeroes, consider closed subsets in An ∼= Ui =
{xi 6= 0} ⊆ Pn. Any prime divisors where the valuation is positive must be contained in (x0/xi)k[x0

xi
, . . . , x0

xi
].

That is, we see that we only need to compute vY (f) for Y = V (x0), V (x1).
Consider Y1 = V (x0) first. So we view f = x0

x1
as sitting in OηY1

,X = (k[x0, . . . , xn]〈x0〉)0. This is a DVR

with uniformizer x0, and we see that the valuation vY1
(f) = 1.

Likewise, for Y2 = V (x1), we get that OηY2
,X = (k[x0, . . . , xn]〈x1〉)0 and in the fraction field of this, we see

that vY2
(f) = −1.

Definition 19.7. Suppose X is a scheme satisfying (∗) and f ∈ K∗. We define the divisor of f , denoted
(f), by:

(f) =
∑

vY (f) · Y.
By the lemma, this sum is finite and therefore an actual member of Div X. Any divisor of this form is a
called a principal divisor.

Remark 19.8. Observe that for f, g ∈ K(X)∗, we have (f/g) = (f)− (g) and (fg) = (f) + (g). So we get
a group homomorphism K(X)∗ → Div X. The image is a subgroup.

Definition 19.9. Suppose X satisfies (∗). The divisor class group of X, denoted Cl(X), is obtained by
taking Div X and quotienting by the subgroup of principal divisors.

Two divisors D,D′ are linearly equivalent (written D ∼ D′) if their difference D−D′ is a principal divisor.

Example 19.10. Let’s do some more concrete examples about how being smooth in codimension 1 is
important.

Let’s observe what happens with the cuspidal cubic Spec k[x, y]/(y2 − x3) and try to figure out some
notion of order of vanishing at the origin. We get that we are considering the ring(

k[x, y]

(y2 − x3)

)
(y,x)

But this is not a DVR: it is not principal, and we have no uniformizer. Even if we try to take some sort of
degree (in x, y) of a polynomial representative, we run into issues like: what should be the order of x2 = y3?
Should it be 2? 3? 6?

The divisor class group is an invariant, but often tricky to calculate. Part of Hartshorne II.6 will be
dedicated towards some techniques and examples.

Proposition 19.11. Consider the scheme Pnk . For any divisor D =
∑
niYi, define the degree to be∑

ni deg Yi where deg Yi is taken as a the degree of the hypersurface. Let H be the hyperplane x0 = 0.
Then:

(a) If D is any divisor of degree d, then d ∼ dH.
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(b) For any f ∈ K(Pnk ), we have deg(f) = 0.
(c) The degree function gives can isomorphism deg : Cl(X)→ Z.

Proof. For (b): we did this computation last time. For (a): collect positive and negative terms, so that
D = D1 − D2 with each Di effective and deg(D1) − deg(D2) = e. Write D1 = (g1), D2 = (g2), then
D − dH = (f) where f = g1/(x

e
0g2). This proves part (a). Part (c) follows. �

20. Feb 28: Computational tools for divisors, divisors on curves

Recommended reading: Harthsorne II.6, Vakil 14.1-14.2 We continue with some examples of
computing class groups, some tools for computation, and some bits on the class group on curves.

Proposition 20.1. Let A be a noetherian domain. Then A is a UFD if and only if X = Spec A is normal
and Cl(X) = 0

Proof. UFDs are integrally closed, so X will be normal. Then the Spec A covering X will be UFDs if and
only if every prime ideal of height 1 is principal. So need: if A integrally closed, then every prime ideal of
height 1 if principal if and only if Cl(Spec A) = 0.

If every prime ideal of ht 1 is principal consider a prime divisor Y = (f = 0), then Div (f) = Y , and Y
zeroes out in the class group.

For converse: suppose Cl(X) = 0. Then Y = (f) (in the class group) corresponding to prime with ht 1 p.
From VY (f) = 1 we have f ∈ Ap and that (f) generates pAp.If q is any other ht 1 prime, then q corresponds
to some Y ′ and vY ′(f) = 0, so f ∈ Aq. Now Matsumura (intersection of Ap ht one primes is A) gives us that
f ∈ A ∩ pAp = p.

To show it generates: let g be any other element of p. Then v(g/f) ≥ 0 for all prime divisors, so regular,
so g/f ∈ A, that is g ∈ fA. Thus p = (f) as ideals. �

Remark 20.2. In general, for a Dedekind domain, Cl(Spec A) is just the ideal class group of A.

Proposition 20.3 (Excision exact sequence). Suppose X satisfies (∗), and let Z be a proper closed subset
of X. Let U = X \ Z. Then:

(a) There is a surjective homomorphism Cl(X)→ Cl(U) defined by

D =
∑

niYi 7→
∑

ni(Yi ∩ U)

where we drop the terms where the Yi ∩ U is empty.
(b) If codim(Z,X) ≥ 2 then Cl(X)→ Cl(U) is an isomorphism
(c) if Z is an irreducible subset of codimension 1, there is an exact sequence

Z 1 7→1·Z−→ Cl(X) −→ Cl(U)→ 0

Proof.

(a) This is well defined since (f) =
∑
niYi on X and (f)U =

∑
ni(Yi ∩ U) on U . It is surjective because

every prime divisor of U is the restriction of its closure.
(b) Div and Cl depend on codimension 1 data, so excising a codimension 2 thing shouldn’t change anything.
(c) The kernel of Cl(X) → Cl(U) is divisors whose support is contained in Z. If Z is irreducible, then the

kernel is just multiples of Z.

�

Example 20.4. It immediately follows that Cl(P2 \D) = Z/dZ for irreducible degree d hypersurfaces.

Example 20.5. Let k be a field, and let A = k[x, y, z]/(xy−z2), the cone over a quadric. Then Cl(X) = Z/2Z
and it is generated by the ruling of a cone, say Y = {y = z = 0}. See details in Hartshorne Example II.6.5.2.

Proposition 20.6. Suppose X satisfies (∗). Then X × A1 = X ×Spec Z Spec Z[t] also satisfies (∗) and
Cl(X) ∼= Cl(X ×A1).

Proof. X×A1 is noetherian, integral, and separated. To see that it’s regular in codim 1: there are two kinds
of points of codimension one. We have
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• First type is points x ∈ X × A1 whose image in X are points of codimension 1, i.e. some y ∈ X of
codimension 1 with {y} = Y codimension 1 in X. Then x is the generic point of π−1

1 (Y ) and the
local ring at that point is

OX×A1,x
∼= OY [t]my

• Second time is a point x ∈ X × A1 whose image under projection to X is codim 0, i.e. the generic
point. Then OX,x looks like the localization of K[t] at some maximal ideal, where K is the function
field of X. It is a DVR because K[t] is a PID.

We define a map Cl(X) → Cl(X × A1) by D =
∑
niYi → π∗D =

∑
niπ
−1(Yi). If f ∈ K∗, then π∗((f))

is the divisor of f considered as an element of K(t), the function field of X × A1.

• Injectivity: If π∗(D) = (f) for some f ∈ K(t), then note that (f) must in fact lie in K, otherwise we
would get components of the second kind (X × pt).

• Surjectivity: We show that any prime divisor of type 2 is linearly equivalent to a combo of the type
1 sort. Let Z be a type 2 prime divisor. Localizing at the generic point of X, we get a prime divisor
in Spec K[t] ⊆ X × A1, yielding a prime divisor in Spec K[t] corresponding to some p ∈ K[t]. This
is principal, so let f be a generator. Then f ∈ K(t), and Div f consists of Z and some pieces of type
1 that could be accrued when passing to K[t]. Thus Z is linearly equivalent to something of type 1.

�

Proposition 20.7 (Exercise 6.1 from your HW). On HW, you will show that X × Pn satisfies

Cl(X × Pn) ∼= Cl(X)× Z
for schemes X satisfying (∗).

Time for divisors on curves. By curves, we mean a integral separated scheme X of finite type over some
field k.

If all the local rings of X are regular local rings, we say X is nonsingular. For X nonsingular, then a curve
over an algebraically closed field k is projective ⇐⇒ it is proper.

Proposition 20.8. Let X be a nonsingular curve, proper over k (AKA complete). Let f : X → Y be a
morphism to another curve over k. Then either:

• f(X) is a point
• f(X) = Y and in this case, K(X) is a finite field extension of K(Y ), f is a finite morphism, and Y

is complete (proper over k)

Proof. Full proof in Hartshorne Prop II.6.8.
Basic split in cases is from the map needing to be closed. In the latter cae, K(Y ) ⊆ K(X) and they are

both transcendence degree 1 over k, so K(X) a finite extension of K(Y ). It follows that the morphism is
finite (V = Spec B affine open of Y , then let A be integral closure of B in K(X). Then A is finite module/B
and Spec A is an affine open of X). �

Definition 20.9. For f : X → Y a finite morphism of curves, define the degree of f to be the degree of the
field extension [K(X) : K(Y )].

Note that for nonsingular curves on X, prime divisors just look like closed points. So may write divisors
as D =

∑
niPi. The degree of D is then

∑
ni.

Definition 20.10. Let f : X → Y be a finite morphism of nonsingular curves. We define a homomorphism
f∗ : Div (Y )→ Div (X) as follows.

For Q ∈ Y , let t ∈ OY,Q be a local parameter at Q, i.e. t ∈ K(Y ) with vQ(t) = 1. Then we define

f∗Q =
∑

f(P )=Q

vP (t) · P

f is a finite morphism, so this sum is finite. Extend linearly to get a morphism on Weil divisors. f∗ preserves
linear equivalence, so we get a map f∗ : Cl(Y )→ Cl(X) on class groups.

Proposition 20.11. Let f : X → Y be a finite morphism of nonsingular curves. For any divisor D on Y ,
we have deg f∗D = deg f · degD.
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Corollary 20.12. A principal divisor on a X nonsingular curve proper over k has degree zero. Thus the
degree map is a surjective function deg : Cl(X)→ Z.

Remark 20.13. It is strongly recommended that you read some of the specifics on divisor theory for elliptic
curves in Hartshorne (Example 6.10.2)

21. Mar 03: Cartier divisors

Recommended reading: Hartshorne II.6, Vakil 14.2-14.3
We would like a notion of divisor for arbitrary schemes. The codimension 1 subvariety idea does not

generalize so well, so we instead try to preserve the notion of taking things that locally looks like the divisor
of a rational function. First, we need something that replaces the notion of a function field on an integral
scheme.

Definition 21.1. Let X be a scheme. For each open U in general, can pick S(U) = elements of Γ(U,OX)
that are not zero divisors. We get a presheaf

U 7→ S(U)−1Γ(U,OX)

and the sheaf associated to this presheaf is K , the sheaf of total quotient rings of OX . K ∗, O∗X denotes the
invertible elements in each.

Definition 21.2. A Cartier divisor on a scheme X is a global section of the sheaf K ∗/O∗X . One can describe
a Cartier divisor as being described via a collection of (fi, Ui) where the {Ui} form an open cover of X, and
each fi ∈ Γ(Ui,K ∗) such that for each i, j, the fi/fj ∈ Γ(Ui ∩ Uj ,O∗) (that is, you can transition with a
regular function on the overlaps).

A Cartier divisor is principal if it is in the image

Γ(X,K ∗)→ Γ(X,K ∗/O∗X)

Two Cartier divisors are linearly equivalent if their ”difference” (that is, quotient) is principal.

Proposition 21.3. Let X be integral, separated, noetherian scheme, whose local rings are all UFDs (that
is, X is locally factorial). Let Div X is isomorphic to the group of Cartier divisors Γ(X,K ∗/O∗X) and the
isomorphism descends to an isomorphism

Cl(X)
∼=−→ CaCl(X)

(
= Cartier div. mod lin equiv

)
Proof. In this case, K is the constant sheaf K(X). Then a Cartier divisor C is given on a cover by {(fi, Ui)}
and fi ∈ K(X)∗. The associated Weil divisor is the following:

• For each prime divisor Y , take the coefficient of Y to be vY (fi), where fi is any i such that Ui∩Y 6= ∅.
This is well-defined because on overlaps Ui ∩ Uj we have fi/fj ∈ O∗X invertible, so vY (fi/fj) = 0
where appropriate to yield that vY (fi) = vY (fj).

For the map in the other direction: let D be a Weil divisor on X. We want to produce a Cartier divisor from
this.

• Let x ∈ X be any point. Then we get a divisor Dx on the local scheme Spec OX,x. OX,x is a UFD,
so Dx = (fx) for some fx ∈ K(X). Because they agree in Spec OX , they could only differ on prime
divisors (subschemes) not passing through x that are in the expression of D or (fx). There are finitely
many, so they agree on some Ux of x.

Then the principal divisor (fx), viewed on X, agree on some open Ux of x. (TO see this: they
only differ on prime divisors not passing through x, and only finitely many have a nonzero coefficient
in D or (fx)). Then the Cartier divisor associated to the D is this data of all the {(fx, Ux)}. This is
well-defined.

These two constructions are inverse. Details can be found in Harthsorne Proposition II.6.11 �

Remark 21.4. The Cartier divisor constructed from a Weil divisor has an open set for each x ∈ X, but in
practice one does not need so many pieces. See the example below.
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Example 21.5. Consider the projective line over k with coordinates [x, y], so P1
k = Proj k[x, y]. We could

consider the Weil divisor V (x), which is represented by the point [0 : 1].
As a Cartier divisor: consider U = {x 6= 0} and V = {y 6= 0}. Then on the set U , the function cutting

out our divisor, x, looks like x|U = 1 (capturing that our divisor doesn’t really have any support over U). So
(U, 1) is one piece of our Cartier divisor.

Consider the piece V = {y 6= 0}. On the set V , the polynomial cutting out our divisor, the x coordinate
function, looks like x/y = v. So we get that the associated Cartier divisor is

{(U, 1), (V, xy = v)}

Note that on the overlaps, the 1/(x/y) is invertible on U ∩ V .
We’ll later see that there is an invertible sheaf you can associate to this divisor, and we will compute that.

Remark 21.6. For X normal, not necessarily locally factorial, we see that the Cartier divisors correspond
to a subgroup of div consisting of locally principal Weil divisors: i.e. D|U is principal for each U .

Example 21.7. For the affine quadric cone k[x, y, z]/(xy − z2) the ruling z = 0 generates the class group
Z/2Z, but CaCl(X) = 0, as the generator of the divisor class group is not locally principal.

To wrap it all up, we see how it all ties together with invertible sheaves/line bundles (locally free of rank
1).

Proposition 21.8. If L ,M are invertible sheaves then so is their product L ⊗M . For any invertible sheaf
L on X there is an invertible sheaf L −1 such that L ⊗L −1 ∼= OX as OX -modules.

Proof. For (a): locally, we can take covers such that on each piece L ,M are trivializable, and then use
that OX ⊗ OX ∼= OX . For (b): let L be an invertible sheaf and set L −1 = H om(L ,OX). Then
L ∨ ⊗L ∼= H om(L ,L ) = OX by Exercise II.5.1 from your HW. �

Definition 21.9. For any ringed space X, define the Picard group of X, denoted Pic(X), to be the group
of isomorphism classes of invertible sheaves, with group operation ⊗.

Remark 21.10. When we learn sheaf cohomology (and Čech cohomology will help) we will see that Pic(X) =
H1(X,O∗X).

Definition 21.11. Let D be a Cartier divisor, represented by {(Ui, fi)} as above. We define a subsheaf
L (D) of the sheaf of total quotient rings K by taking L (D) to be f−1

i OX ∈ K (U). This is well-defined as

fi/fj is invertible on Ui ∩ Uj , so f−1
i , f−1

j generate the same OUi∩Uj
−module.

Remark 21.12. You may see people refer to this as OX(D), which overlaps with terminology for the
construction of a line bundle from a Weil divisor. In most cases, it’s either clear whether you’re using a
Cartier or Weil divisor, or, perhaps more likely, you’re in a scenario where it does not matter.

Proposition 21.13. Let X be a scheme.

(a) For any Cartier D, L (D) is an invertible sheaf on X. The map D 7→ L (D) gives a bijection between
Cartier divisors on X and invertible subsheaves of K

(b) L (D1 −D2) ∼= L (D1)⊗L (D2)−1

(c) D1 ∼ D2 ⇐⇒ L(D1) ∼= L(D2) as abstract invertible sheaves (so ignoring how they embed in K )

Proof.

(1) Clearly locally free of rank 1 by definition. The cartier divisor can be recovered (i.e. a map in other
direction) by taking Ui a cover such that on Ui it is locally generated by fi.

(2) If D1 locally generated by fi, and D2 locally generated by some gi, then L (D1 − D2) is locally
generated by f−1

i gi and then certainly L (D1−D2) = L (D1) ·L (D2)−1 as subsheaves on the right,
yielding L (D1)⊗L (D2)−1.

(3) Use that you can globally generate the difference, so 1 7→ f−1 trivializes the difference f the sheaves.

�

Corollary 21.14. On any scheme this assignment gives an assignment CaCl to Pic that is injective
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Remark 21.15. May not by surjective: there may be invertible sheaves that can not be realized as subsheaves
of K . The examples of such tend to be fairly bizarre: in most scenarios these groups are the same.

Proposition 21.16. If X is an integral scheme, then CaCl to Pic is an iso.

Proof. Need that every invertible sheaf on X is realizable as a subsheaf of K , which is the constant sheaf
K(X). On trivializable neighborhoods, L ⊗K ∼= K , so constant on U . X irreducible, so L ⊗K ∼= K
overall, and L→ L⊗K expresses it as a subsheaf. �

Corollary 21.17. Noetherian, integral, separated, locally factorial implies class group and pic same.

Remark 21.18. And so we see another reason to care about divisors: their ties to line bundles, which, as
we will see in Hartshorne II.7, are tied to morphisms to projective space.

22. Mar 05: Misc. divisor & l.b. constructions, morphisms to projective space

Recommended reading: Hartshorne II.7, Vakil 14.1-14.2, 15.1-15.4

Some last-bits-and bobs on Hartshorne II.6 material:

Let’s circle back to our last example. We saw that the Cartier divisor associated to V (x) in P1
k =

Proj k[x, y] was {(D(x), 1), (D(y), xy } = C. We get that the associated line bundle L (C) = OX(C) is given

on D(x) by OX |D(x) and on D(y) by ( yx )(OX |D(y)) ⊆ K(X). That is, on D(x) the module is generated by 1
and on D(y) the module is generated by ( yx )

Then the transition function on D(x) ∩D(y) (when viewing in D(x) versus D(y)) is:

OD(x)∩D(y)
×(x/y)→ OD(x)∩D(y)

which is the transition function of OP1(1), as we’d like it to be.

Below recaps some info about constructions relating divisor data and line bundle data. We will assume
that X is integral henceforth.

Definition 22.1. Let L be an invertible sheaf on a scheme X. A rational section of L is a section of L
over a nonempty dense open set U .

Remark 22.2. Equivalently, this is a global section of L ⊗K . Locally, X = Spec A, L = M̃ , K = K (A).
Then:

Γ(X,L ⊗K ) = M ⊗K (A) = Mη

Given a line bundle L and a rational section s, there are a few constructions we can do.

• We always get a map div to Cartier divisors: write X = ∪Ui where L is trivializable on the Ui, let
s be a rational section, then take si to be the image of s under

(L ⊗K )|Ui → (OX ⊗K )|Ui

On the overlaps the transitions are si/sj ∈ O∗ so we get a well-defined element {(Ui, si)}.
• In scenarios were Weil divisors make sense, we can also define the associated Weil divisor

div(s) =
∑
Y

vY (s)

where we make sense of vY (s) as follows: take any open U containing the generic point of Y on which
L is trivializable. Then s is a nonzero rational function on U , and has a valuation. In this case, get
Div : {(L , s}/ ∼=→Weil.

One can more directly define the bundle associated to a Weil divisor OX(D):

Γ(U,OX(D)) := {t ∈ K (X)∗ : div|U (t) +D|U ≥ 0} ∪ {0}
Where div|U (t) means take the divisor as a rational function of U , i.e. ignore prime divisors Y outside of
U and the ≥ 0 condition means that the coefficients of the Weil divisor are all non-negative. That is, your
sections have certain permissible zeroes/poles that are controlled by D.
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For H = V (x) in P1
[x,y], consider the line bundle OX(H). We see that on D(x) this looks generated as an

OX -module by 1, and on D(y) this looks generated by y
x , as we expected. That is, in this sheaf the rational

functions on D(y) are allowed a pole of order one at x = 0.

Remark 22.3. We indeed have that, for a line bundle L and rational section s, that O(div(s)) ∼= L . This
is quite useful in certain pullback computations.

Remark 22.4. One can find a summary of the various maps and constructions relating to Cartier divisors,
Weil divisors, and line bundles in 14.2.7 of Vakil.

Certainly in our Grothendieck-type perspective we care about morphisms from a scheme X, and of par-
ticular note are morphisms to projective space. Projective varieties are so important, and the ways to can
map and embed X into projective space are controlled by line bundles and their sections.

Namely, we see how a morphisms X to a projective space is determined by giving an invertible sheaf L
and some collection of the global sections of L . Under certain criteria, it will be an immersion. Through
this we see how ampleness is a useful/important property and run into the terminology of linear systems.

Now, onto studying morphisms to Pn!

Let A be a fixed ring, and consider PnA = Proj A[x0, . . . , xn]. This has a line bundle O(1) and homogeneous
coordinates x0, . . . , xn yield global sections x0, . . . , xn ∈ Γ(PnA,O(1)). Note that the images of these in any
stalk will generate, so O(1) is globally generated.

Theorem 22.5. Let A be a ring, and X a scheme over A.

(a) If ϕ : X → PnA is a morphism as A-schemes, then ϕ∗(O(1)) is an invertible sheaf on X, generated by the
global sections si = ϕ∗(xi) (where i = 0, 1, . . . , n).

(b) Conversely, given L invertible sheaf on X and s0, . . . , sn generating L globally, there is a unique A-
morphism X → PnA such that L ∼= ϕ∗(O(1)) and si = ϕ∗(xi) under the iso.

That is, roughly: equivalence between two things:

• Morphisms X → PnA and
• Invertible sheaves L on X and a choice of n+ 1 global sections x0, . . . , xn that globally generate L .

(i.e. images in stalk generate).

⇒: O(1)⇒ ϕ∗ invertible, and note that (ϕ∗O(1))p = O(1)ϕ(p)⊗OPn,ϕ(p))
OX,p get that the si⊗ 1 = ϕ∗(si)

generate.
⇐: proof will be finished next time.

23. Mar 07: Closed immersion maps to projective space

Recommended reading: Hartshorne II.7, Vakil 15.2, 15.3

Our first goal is to finish the proof from last time.
⇐: We want to show that given L and global sections s0, . . . , sn globally generating L , that there is a

unique A-morphism X → PnA such that L ∼= ϕ∗(O(1)) and si = ϕ∗(xi).

Intuitively, this map is given by x 7→ [s0(x), . . . , sn(x)]. For example, for X = P1
k,L = OP1(3) and

generating sections x3, x2y, xy2, y3, the map should be, on closed points,

P1 → P3

[x, y] 7→ [x3, x2y, xy2, y3]

and the pullback of x0 would be x3, and so on. But we need to formalize this process: we should give the
map as schemes, and we should be careful about what we mean when the global sections aren’t clearly things
that could give you a function to projective space.
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Note with this example: a hyperplane condition x0 = 0 becomes something like x3 = 0 when pulled
back. Take div of this to get 3H, which is a Weil divisor that can produce OP1(3) under the correspondence
D 7→ OP1(D). This is what we want!

First, we cover X in D(si) = {p ∈ X : (si)p 6∈ mpLp}, the ”nonvanishing of si”. Note that (si)p ∈ mpLp

means that si|p = 0 in the fiber L |p = L ⊗ k(p) = Lp/mpLp. This means, in the section-of-a-bundle
interpretation of si, that si takes the value zero at p.

The fact that the si generate L means that X = ∪D(si). Set D(si) := Ui. On this, define the map

ϕi : D(si)→ D(xi) ⊆ Pn

induced by

ϕ : A

[
x0

xi
, . . . ,

xn
xi

]
→ Γ(D(si),OD(si))

xj
xi
→ sj

si

This is well-defined: the quotient must be an element of the structure sheaf. This is because L is locally
free of rank 1. One way that might help to see it is

OX |Ui

∼=−→ L |Ui

1 7→ si

is an isomorphism. There are a couple mays to see this. The first, and perhaps the most formal, is that
you can check this is an isomorphism on trivializable affines Ui,j , in which si restricts to things looking like
units in each Ui,j . Hence si must generate L on each Ui,j . Another way to see this from the idea that a
line bundle on some X or in this case Ui with a nonvanishing section is trivializable (it gives you a consistent
way to pick a basis of the fibers!).

On overlaps Ui ∩ Uj we get sk
si

= sk
sj
· ( sjsi ), so the morphisms glue to

ϕ : X → Pn

By construction, the L = ϕ∗(O(1)) (it has the right transition functions) and ϕ∗(xi) = si. Any other
morphism with these properties would need to be the one we’ve constructed.

Remark 23.1. In our beloved P1 → P3 example, with the line bundle OP1(3) and sections x3, x2y, y2x, y3,
this describes the map via 4 charts:

D(x3)→ D(x0) ⊆ P3

[x, y] = [1, yx ] 7→
[
1, x

2y
x3 ,

xy2

x3 ,
y3

x3

]
= [1, yx , (

y
x )2, ( yx )3]

D(x2y)→ D(x1) ⊆ P3

[x, y] 7→
[
x
y , 1,

y
x , (

y
x )2
]

D(xy2)→ D(x2) ⊆ P3

[x, y] 7→
[
(xy )2, xy , 1,

y
x

]
D(y3)→ D(x3) ⊆ P3

[x, y] 7→
[
(xy )3, (xy )2, xy , 1

]
which all patches to [x, y]→ [x3, x2y, xy2, y3].

Proposition 23.2. Likewise, rational maps X → PnA are in 1-to-1 correspondence with line bundles L with
n+ 1 global sections s0, . . . , sn.

Proof. Largely the same proof, but the si not globally generating means that possibly we only have this
morphism defined on U = ∪D(si), which may be a proper subset of X. �
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Definition 23.3. In the notation above, the base locus of the morphism is, as a set, X \U = V (s0, . . . , sn).
It is the closed set where the morphism is not defined. We will worry about its specific scheme structure
later, when we deal with blowups.

It is immediate that s0, . . . , sn globally generate L if and only if the base locus is empty.

Example 23.4. If we take X = P2 and line bundle OP2(2) with sections yz, xz, xy, we would get the
morphism

P2 99K P2

[x, y, z] 7→ [yz, xz, xy] = [ 1
x ,

1
y ,

1
y ]

The base locus is [1, 0, 0], [0, 1, 0], [0, 0, 1].

Example 23.5. If one takes X = Pn+1
k and L = O(1) and sections x1, . . . , xn+1, then the base locus is

[1, 0, . . . , 0] = P and the map Pn+1 → Pn is projection from P onto the hyperplane x0 = 0.

Corollary 23.6. The automorphisms of Pnk are given by PGLn(k) = GLn+1(k)/k∗.

Proof. An element of GL induces an automorphism of k[x0, . . . , xn] and thus of projective space. Scalar
multiples induce the same automorphism, so may consider as an element of PGL.

To see that all automorphisms are of this form: consider an automorphism ϕ : Pnk → Pnk . Then pullback
induces an automorphism of Pic(Pnk ) ∼= Z. So then ϕ∗(O(1)) must be a generator of Pic(Pnk ) and it also must
have global sections, so ϕ∗(O(1)) = O(1). The si = ϕ∗(xi) must also be a basis of 〈x0, . . . , xn〉 and thus
determine an element of M of GL. Scalar multiples don’t change the map, so just care about PGL rep. Note
that the map looks like [x0, . . . , xn]→ [Mx0, . . . ,Mxn]. �

24. Mar 10: Closed immersions to Pn

Recommended reading: Hartshorne II.7, Vakil 15.3, 16.3,
The next question becomes: when does the morphism associated to a line bundle L and sections si give

a closed immersion to Pn? That is, realizes X as a closed subscheme of Pn.

Proposition 24.1. Let ϕ : X → PnA be a morphism of A-schemes corresponding to the data of L and global
sections s0, . . . , sn. Then, ϕ is a closed immersion if and only if

(1) each open D(si) is affine and
(2) for each i the map of rings A[x0/xi, . . . , xn/xi]→ Γ(Xsi ,OXsi

) is surjective.

Proof. Only if direction clear: take X∩D(xi) – then X∩D(xi) ∼= D(si) is a closed subscheme of D(xi) ∼= An
hence D(si) is affine and the map of rings is surjective. For if direction: surjective map and affine means
that each Xi is a closed subscheme of Ui, hence X is a closed subscheme. �

Can also do more local criterion for closed immersion.

Theorem 24.2. Let k be algebraically closed, X be projective over k, and ϕ : X → Pnk be a morphism (over
k) corresponding to L and s0, . . . , sn. Let V ⊆ Γ(X,L ) be the subspace spanned by these sections (the
associated linear system). Then ϕ is a closed immersion iff

(1) elements of V separate points: i.e. for any two closed points P,Q we have s ∈ V such that s ∈ mPLP

but s 6∈ mQLQ (or vice-versa)
(2) elements of V separate tangent vectors: i.e. for each closed point P ∈ X, the set

{s ∈ V : sP ∈ mPLP }
spans the vector space mPLP /m

2
PLP (This the analogous to the condition in differentiable manifolds:

that immersions should induce an injective pushfoward on tangent spaces).

Proof. For ϕ a closed immersion: think of X as a subscheme, so that L = OX(1), and L is globally generated
by the images of x0, . . . , xn. Take a hyperplane containing one point and not containing another to get a
section achieving (1). For (2), the hyperplanes passing through P give sections that generate mpLp/m

2
pLp.

To be more explicit: take P = [1, 0, . . . , 0] and take an An = Spec k[y1, . . . , yn] containing it. Then L is
trivial, and the sections y1, . . . , yn span m/m2 = mL /m2L .
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For the converse: suppose ϕ : X → Pn satisfies the properties. From the first, it is clear that the map is
injective on the level of sets. Since X is projective over k, it is proper, and so the image must be closed and
ϕ is a closed map. Hence ϕ is a homeomorphism onto its image.

To show it is a closed immersion, we need the morphism of sheaves OPn → ϕ∗(OX) is surjective, which
we check on stalks

OPn,P → OX,P .
Note that we are using that ϕ maps homeomorphically onto its image to get that ϕ∗(OX)P = OX,P . Now,
both rings have the same residue field, and (2) implies that the image of mPn,P generates mX,P /m

2
X,P . Then

this turns into:

• Let f : A → B be a local homomorphism of local noetherian rings such that A/ma → B/mB is
an isomorphism, mA → mB/m

2
B is surjective, and B is a finitely generated A-module. Then f is

surjective.

This is basically a Nakayama’s lemma proof to get that f is surjective on stalks. (For most Hartshorne
problems you encounter, the formulation of Nakayama’s that you want is: if you have M and R module and
elements m1, . . . ,mn ∈M such that the images m1, . . . ,mn generate M/J(R)M as an R/J(R) module then
the mi generate M as an R module). �

Remark 24.3. Intuitively, the second property is capturing that you don’t want to squish tangent vectors.

Example 24.4. Observe that if we pick P1 with line bundle O(2) and sections x2, y2 then the map

P1 → P1

[x, y] 7→ [x2, y2]

is not an immersion as it does not separate points: [−1, 1], [1, 1] map to the same thing.

Example 24.5. Consider the curve C in P2 = Proj k[x, y, z] cut out by x2− yz = 0. Consider O(1) on this,
with sections y, z. Set V = 〈x2, y2〉. This yields a map C → P1. This does not separate tangent vectors:

Work on the chart z 6= 0. Then our curve looks like Spec k[x, y]/(x2− y). In the stalk k[x, y]/(x2− y)(x,y)

the maximal ideal is generated by (x) and m/m2 = 〈x〉. Then

{s ∈ V : sp ∈ mpLp} = {y}

but y does not span m/m2 because y = x2 = 0 in this quotient.

Example 24.6. Consider C = P1 = P1
[s,t] and L = O(3) with global sections st2, t3, s3. Set V = 〈st2, t3, s3〉.

Then we have

P1 → P3 = P3
[x,y,z]

[s, t] 7→ [st2, t3, s3]

[1, t] 7→ [t2, t3, 1]

This maps injectively to the cuspidal cubic (y2z − x3) = 0. This separates points but not tangent vectors.
On the chart s 6= 0 this looks like A1

t → A3
x,y, t 7→ (t2, t3). Let’s look at what happens at the origin p = 0.

We note that

{s ∈ V : sp ∈ mpLp} = {st2, t3}
But in mp/m

2
p both of these are zero because they each lie in (t2).

25. Mar 12: Ampleness, linear systems, a review of blowups in the algebraic set sense

Recommended reading: Hartshorne II.7, Vakil 16.6
So, we’ve seen that studying projective varieties (and how they can sit in projective space) by studying

line bundles and their sections. Now, for ampleness. Intuitively: high tensor powers of ample line bundles
are very ample, and very ample bundles give immersions to projective space. Of course, we need to be a bit
careful on details: ample, for us, is an absolute notion, whereas very ample is a relative one.



46 MORELAND

Definition 25.1. An invertible sheaf/line bundle L on a noetherian scheme X is ample provided that, for
every coherent sheaf F on X, there is an integer nF > 0 such that for every n ≥ nF such that F ⊗L n is
generated by global sections.

Recall that F is globally generated if you can find a collection of global sections {si} such that the images
of the si generated Fx as an OX,x module.

Remark 25.2. One should think of ampleness as a sort of ”positivity” condition. (Even more reinforced
with things like Kleiman’s ampleness criterion or the Nakai-Moishezon ampleness criterion).

Remark 25.3. Note that if X is affine, then any invertible sheaf is ample, because every coherent (in fact,
any quasicoherent) sheaf on an affine scheme is generated by global sections.

Proposition 25.4. Let L be an invertible sheaf on a noetherian scheme X. The following are equivalent.

(i) L is ample
(ii) Lm is ample for all m > 0
(iii) Lm is ample for some m > 0

Proof. Straightforward exercise from the definition. �

Remark 25.5. Recall that an invertible sheaf L is very ample relative to Y provided that there is an
immersion i : X → PrY = PrZ ×Z Y for some r such that i∗(O(1)) = L . (A morphism is an immersion if it
gives an isomorphism of X with an open subscheme of a closed subscheme).

Theorem 25.6. Let X be a scheme of finite type over a Noetherian ring A, and L be an invertible sheaf
on X. Then L is ample if and only if Lm is very ample over Spec A for some m > 0.

Proof. See Hartshorne II.7.6 to see how one guarantees L has a suitably high power than defines an embed-
ding to PN . �

Remark 25.7. Why introduce the notion of ampleness? First, it’s still useful to know that powers of a
line bundle eventually give us an embedding into projective space. Secondly, it has some stability under
pullbacks: the pullback of a very ample line bundle under a finite morphism need not be very ample, but the
pullback of an ample line bundle under a finite morphism is ample (with some niceness criteria: Noetherian,
projective over k works). Thirdly, there are nice numerical criterion for ampleness. (You can find some
numerical criterion for very ampleness, but generally, aside from curves, they’re more complicated and the
proofs are not so easy).

Remark 25.8. Looking at the correspondence between maps X → Pn and line bundles and global sections,
it seems like one should be able to come up with an example of a very ample line bundle pulling back to
something not very ample (under a finite morphism) by just pulling back OPn(1) along a well-chosen map.

One example that works: consider f : E → P1
C, a complex elliptic curve with its 2-to-1 map to P1. Then

OP1(1) is very ample, but f∗(O(1)) = M is not. Proving this requires us to borrow some future tools.
Riemann-Roch tells us that

h0(M )− h0(ωE −M ) = deg(M )− g(E) + 1

On the left side we get h0(M ) (note that ωE ⊗M−1 has no global sections because it has negative degree).
On the right side we get 2 − 1 + 1 = 2. So M has a two-dimensional space of global sections. Then M is
not very ample: at best you could use it to define a map to P1, but this cannot be an immersion.

Remark 25.9. For a projective nonsingular curve C and a divisor D on it, L (D) is ample if and only if
degD > 0. This is also a consequence of Riemann-Roch.

Linear systems of divisors time! Let X be a smooth projective variety over an algebraically closed field k.
The complete linear system associated to a divisor D on X is

|D| = {D′ : D′ ≥ 0, D′ ∼ D}

Proposition 25.10.

(1) D′ effective and D′ ∼ D ⇐⇒ D′ = Div (s) for some s ∈ Γ(X,L (D)) \ {0}.
(2) Div (s) = Div (s′) ⇐⇒ there exists λ ∈ k∗ such that s′ = λs.
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Proof. See Hartshorne Proposition II.7.7. �

Corollary 25.11. We have the following:

|D| = (Γ(X,L (D)) \ {0})/k∗

= P(Γ(X,L ))

Definition 25.12. A linear system L on X is a subset of |D| giving a linear subspace of P(Γ(X,L )). Can
also be specified by a vector space

V = {s ∈ Γ(X,L (D)) : Div (s) ∈ L} ∪ {0}
Note that dimL = dimV − 1.

Remark 25.13. Sometimes you may see |D| used to refer to Γ(X,L (D)) (so, no projectivization), and a
linear series taken to be a vector subspace of this.

Definition 25.14. The base locus of a linear system L is, as a set, the intersection of all elements of L. L
if base point free (bpf) if the base locus is empty.

Definition 25.15.

Remark 25.16. One has a similar construction for Cartier divisors, so long as one interprets an effective
Cartier divisor as one defined by regular functions, not just rational. That is, effective Cartier divisors
correspond to closed subschemes whose ideal sheaves are invertible OX -modules.

Now, for a relative version of Proj so that we may build up to the blow up! The blow up is great: good
for resolving singularities and maps, good for translating certain problems. (Intuitively, roughly speaking,
blowing up a subscheme Y of X replaces Y with a projectivization of the normal bundle of Y in X). You’ve
seen the blowup of a point in the plane before, but eventually we will blow up arbitrary subschemes.

First, a slight review/crash course on blowups in the 552 sense. You likely saw blowups as closures of
graphs. e.g. you have f : A2 99K P1, x 7→ [x], the graph of which in A2 × P1 has closure

Bl(0,0)A2 = {(p ∈ A2, [`] ∈ P1) : p ∈ [`]} ⊆ A2 × P1

We have a diagram:

Bl(0,0)A2 A2 × P1 P1

A2

i

β π1

π2

f

where we interpret P1 as parametrizing lines through the origin in A2. Away from the origin, this just looks
like A2 \ {(0, 0)} and β yields an isomorphism. Around the origin, note that β−1((0, 0)) = π−1

1 ((0, 0)) ∼= P1.
This P1 in the blowup is the exceptional divisor of the blowup. 1

Note that f : A2 → P1 was only a rational map, whereas we get a morphism π2 ◦ i : Bl(0,0)A2 that agrees
with f ◦ β away from the exceptional divisor.

One can think of the blowup at the origin being formed by removing the origin from A2 and replacing
it with a projectivized copy of the tangent plane, P(T(0,0)A2) ∼= P(A2) (for the sake of visualization, you
can think of this in the smooth manifolds over R or C sense). Doing so allows us to ”keep track” of the
directions by which curves approach the origin. One way to see this: if x0, x1 are coordinates on A2 and
Y0, Y1 coordinates on P1, then the blowup is cut out by x0Y1 − x1Y0 = 0 (note that this does make sense,
the equation can be scaled in the Yi’s). Then this is covered by two affine charts: one where Y1 6= 0, and one
where Y2 6= 0. On the Y0 6= 0 chart we get

U0 = Spec
k[x0, x1, Y1/Y0]

(x0(Y1/Y0)− x1)
= Spec k[x0, x1, x1/x0] = Spec k[x0, x1/x0]

1This copy of P1 over the origin is an example of a (-1) curve. The degree of its normal bundle is (−1), intuitively meaning
that you cannot ”move” the curve as you could, say, a line in P2. (-1) curves have a rich theory in birational geometry– you can
see, for example, Harthsorne Chapter V or Debarre’s book for more.
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and on the Y1 6= 0 chart we get

U1 = Spec
k[x0, x1, Y0/Y1]

(x0 − x1(Y0/Y1))
= Spec k[x0, x1, x0/x1] = Spec k[x1, x0/x1]

That is, on each chart, your regular functions can be used to keep track of the coordinates of points, but it
also records the data of their ratio: meaning as you approach the origin (with, say, a curve), you can keep
track of the data of what direction you approach the origin at.

In particular: take the curves C1 : x0 = 0 and C2 : x0 = x1 in A2, and look at their proper trans-
form: take β−1(Ci \ {0, 0}) and then take their closure. Denote these proper transforms– also known as

strict transforms– as C̃0 and C̃1. Away from the origin, these curves are parametrized by ((0, t), [0, t]) and
((t, t), [t, t]). The closure adds the points ((0, 0), [0, 1]) and ((0, 0), [1, 1]) respectively. That is,

C̃0 ∩ β−1(0, 0) = ((0, 0), [0, 1]), C̃1 ∩ β−1(0, 0) = ((0, 0), [1, 1])

The original curves intersect but their strict transforms do not, because these lines approached the origin
at different angles. Likewise, the strict transform of the nodal cubic x2

1 = x3
0 +x2

0 separates the two branches
of the node and becomes regular.

The last thing to be observed from this example for now: note that the preimage of ((0, 0)), which is the
exceptional divisor β−1((0, 0)), is now an effective Cartier divisor: on U0 it is cut out by x0 = 0. On U1 it is
cut out by x1 = 0.

In general, to blow up some subset Y = V (f1, . . . , fk) in An, you would take

An → Pk−1 = Pk−1
[Y0,...,Yk]

(x1, . . . , xn) 7→ [f1(x), . . . , fk(x)]

and take its closure, which is cut out by the equations fi(x)Yj − fj(x)Yi, and on patches looks like

Spec k[x0, . . . , xn, f1/fi, . . . , fk/fi]

Similarly, for a varietyX ⊆ An you can repeat this process and get charts looking like Spec k[X][f1/fi, . . . , fk/fi],
where k[X] is the coordinate ring associated to the variety. This gives you an idea of how the blowup should
be built in general.

26. Mar 14: Scheme-theoretic blowups

Recommended reading: Harthsorne II.7, Vakil 8.3 (scheme-theoretic images), 17.2 (relative
proj), 22.1-22.4 (blowups). You may also find 10.2 useful (namely see 10.2.G about extending
maps over an effective Cartier divisor).

In general, let X be a noetherian scheme and I be a coherent sheaf of ideals on X. The blowup of X
along Y (also referred to the blowup of X with center Y ) is

X̃ = ProjX

( ∞⊕
d=0

I d

)
But what does this notation/construction mean? That’ll be one of our next orders of business. But let’s talk
about its universal property first, and what information we can get from it right off the bat.

Suppose Y is a subscheme of X defined by a coherent sheaf of ideals. Then the blowup is the data of
a scheme BlYX with morphism β : BlYX → X with the following properties: first, form the following
Cartesian diagram

EYX ∼= Y ×X BlYX BlYX

Y X

β
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One of the first conditions is that EYX must be an effective Cartier divisor. The second property is the
following universal property: for any other Cartesian diagram

D W

Y X

where D is an effective Cartier divisor on W , the diagram must factor uniquely through the first:

D W

EYX BlYX

Y X

β

By the usual arguments, if this blow-up exists, it is unique up to unique isomorphism. We can show a few
results immediately based on these properties.

Proposition 26.1. If Y is the empty set, then BlYX ∼= X. Note that id : X → X satisfies the universal
property.

Proposition 26.2. If Y is an effective Cartier divisor, then the blowup BlYX is an isomorphism, as id :
X → X satisfies the universal property.

Proposition 26.3. If U ⊆ X is open, then BlU∩Y U ∼= β−1(U).

That is, blowups can be computed locally.

Corollary 26.4. β|BlYX\EYX : (BlYX) \ EYX → X \ Y is an isomorphism.

Proposition 26.5. If {Xi} is an open cover of X and BlY ∩XiXi exists for all i, then BlYX exists.

Next, we do the blow-up closure lemma, a useful computation tool. First, we need to hash out some details
about what we mean about closures in the scheme-theoretic sense.

If Z ↪→ X is any closed subscheme X, then the scheme-theoretic pullback β−1(Z) = Z ×X BlYX is the

total transform of Z. β−1(Z \ Y ) is the proper transform (or strict transform) of Z. Eventually, we’ll see
that it is (naturally isomorphic to) BlZ∩Y Z.

Remark 26.6. One must make clear what taking the closure means, scheme-theoretically. Let π : X → Y
be a morphism of schemes, and i : Z → Y be closed subscheme. We have an exact sequence

0→ IZ/Y → OY → i∗OZ → 0

Coming from 0 → I → A → A/I → 0 on affines. We say that the image of π : X → Y lies in Z if the
composition IZ/Y → OY → π∗OX is zero. Roughly, this means that functions vanishing on Z pull back to
the zero function on X. (Make sure you understand why is this is the correct criteria!)

If the image of π lies in various Zj , then the image lies in their intersection. We then have the following:

Definition 26.7. The scheme-theoretic image of π : X → Y is the smallest closed subscheme containing
the image. That is, it is the intersection of all closed subschemes containing the image.

Definition 26.8. The scheme-theoretic closure of an immersion (open ◦ closed embedding) π : X → Y
is the scheme-theoretic image of π.

Remark 26.9. In most situations you’ll work with (e.g. finite type morphisms) then you can compute the
scheme-theoretic image affine-locally: on Spec A ⊆ Y , it is cut out by the functions (so, elements of A) that
pull back to zero on π−1(Spec A). See Vakil 8.3 for more on scheme-theoretic closures.
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Lemma 26.10 (The blow-up closure lemma). Suppose we have a Cartesian square

W Z

Y X

cl. emb.

cl. emb.

cl. emb.

where Y ↪→ X is cut out by a coherent ideal sheaf. Suppose Z → X is a closed embedding. Let’s study the
proper and total transforms in this scenario. Taking the fiber product of everything in this diagram along
β : BlYX → X we get

W ×X EYX Z ×X BlYX

EYX BlYX

loc. prin.

Cartier

The bottom closed embedding is locally cut out by one equation, and so the top one is too. But those
equations may be zero divisors and thus not live in K ∗. Now, let Z be the scheme theoretic closure of
(Z ×Y BlXY ) \ (W ×Y BlYX)

EZ Z proper transform

W ×X EYX Z ×X BlYX total transform

EYX BlYX

Cartier

loc. prin.

Cartier

Now, take the pullback of EYX along this diagram to get EZ .

Lemma 26.11. (BlWZ,EWZ) is canonically isomorphic to (Z,EZ). That is, if BlYX exists, then (Z,EZ)
is the blowup of Z along W . That is, the proper transform is the blowup of Z along W ∩ Y . (Intersection
taken scheme-theoretically).

Proof. Set up a big 3D grid of commutative diagrams with all the relevant schemes and then diagram-chase
to show both pairs satisfy the universal property. See Vakil 22.2.G for a bit more exposition. �

Remark 26.12. The key takeaway is this really helps with concretely computing blowups. Suppose you
have C a curve embedded in P2, singular at p. Suppose you want to blow up C at p. Then we could instead
blow up the plane at p and take the scheme-theoretic closure of C \ {p} in the blowup.

Remark 26.13. Z → X is not strictly required to be a closed embedding, even if that’s the most common
usage. See 22.2.5, 22.2.7 in Vakil for some nice exposition about this.

Time to actually construct this object! We will use a relative proj, though 22.2.7 in Vakil also uses the
blowup closure lemma to ensure the existence. Over an affine base, this relative proj aligns with the usual
construction.

As we go forward we impose the following conditions.

(†) X noetherian, S a quasicoherent sheaf of OX -modules, which has the structure of a sheaf of graded
OX -algebras. That is,

S =
⊕
d≥0

Sd

We also assume S0 = OX , and that S1 is a coherent OX -module, and that S is locally generated by
S1 as an OX -algebra. (It follows that Sd is coherent for all d ≥ 0).

We now define the relative proj of a sheaf of graded algebras.

Construction 26.14. Let X be a scheme and S a sheaf of graded OX -algebras satisfying †. For each open
affine U = Spec A in X, we set

S (U) = Γ(U,S |U ),
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which is a graded A-algebra. Then we can take Proj S (U) and it has a map

πU : Proj S (U)→ U = Spec A.

If f ∈ A and Uf = Spec Af , then since S is qcoh, we see that Proj S (Uf ) ∼= π−1
U (Uf ). For U, V affine this

can be used to patch together π−1
U (U ∩ V ) ∼= π−1

V (U ∩ V ). We are thus able to glue together these proj’s
together into ProjXS which comes with a morphism ProjXS → X. Note that the O(1) on each chart
glues to an invertible sheaf O(1) on ProjXS . It is not necessarily very ample.

Remark 26.15. Though note, most facts about Proj S can be extended to an analogous fact on ProjXS .

Theorem 26.16. Suppose Y ↪→ X is a closed subscheme cut out by a coherent sheaf of ideals I ↪→ OX .
Then:

ProjX(OX ⊕I ⊕I 2 ⊕ . . . )→ X

satisfies the universal property of the blowup.

We will prove this next time.
Note: one of the properties of the blowup is that Y needs to pull back to an effective Cartier divisor on

BlYX. This construction is the simplest way to ensure that. EYX corresponds to the ideal (I ⊕I 2⊕I 3⊕
. . . ). For this to be an effective Cartier divisor it needs to also be an invertible sheaf, which it is because it
is O(1) (it is obtained by shifting the grading!).

27. Mar 17: Blowups, resolving maps, starting differentials

Recommended reading: Hartshorne II.7, Vakil 22 for blowups. Hartshorne II.8 and Vakil
21.1-21.2 for differentials.

We finish off the proof from last time. Note that we checked that I, the ideal sheaf cutting out Y in X,
now yields an effective Cartier divisor (invertible ideal sheaf) on BlYX denoted EYX. It corresponds to the
ideal (I ⊕I 2 ⊕I 3 ⊕ . . . ). The exceptional divisor EYX can then be described as the scheme

ProjY = (OX/I ⊕I /I 2 ⊕I /I 2 ⊕ . . . )

Remark 27.1. Note that Hartshorne phrases the universal property of the blowup fairly different from
Vakil. It is the same in the end, but you will want to read Proposition II.7.14 to familiarize yourself, as well
as Caution II.7.12.2 to make sure you are interpreting the notation f−1I · OX correctly.

Proof of Theorem 26.16. Because blowups can be computed locally, we can reduce to the case of an affine
target Spec R and ideal I ⊆ R. For the universal property, reduce to the case of an affine source Spec S with
principal effective Cartier divisor cut out by t. Consider the setup

Spec S → Spec R

S ← [ R : f

Write I = (x1, . . . , xn) with (f(x1), . . . , f(xn)) = (t), which is required by the fact that the exceptional
divisor pulls back to the Cartier divisor (t). Use X1, . . . , Xn to denote these generators x1, . . . , xn in the
degree 1 part of R[I]. We must show the map on schemes factors through our proposed blowup.

Spec S/(t) Spec S

EYX BlYX = Proj (R⊕ I ⊕ I2 ⊕ . . . )

Spec R/I Spec R

Let R[I] = R ⊕ I ⊕ I2 ⊕ . . . . We will describe one map Spec S → Proj R[I], and show that it has to be
unique. Note that since (f(x1), . . . , f(xn)) = (t), and t is not a zero divisor, we have that f(xi)/t makes
sense, and furthermore (

f(x1)
t , . . . , f(xn)

t

)
= S,

meaning the D(f(xi)/t) cover Spec S.
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We map Spec S → Proj R[I] as follows. Spec S is covered by D(f(xi)/t) and Proj R[I] is covered
in D(Xi). On these opens, Proj R[I] looks like spec of R[X1/Xi, . . . , Xn/Xi]/(x1 − (X1/Xi)xi, . . . , xn −
(Xn/Xi)xi). We describe maps D(f(xi)/t)→ D(Xi) via:

R[X1/Xi, . . . , Xn/Xi]/(x1 − (X1/Xi)xi, . . . ) −→ S f(xi)
t

r 7→ f(r) (r ∈ R)

Xj/Xi 7→
(f(xj)/t)

(f(xi)/t)

(This is induced from the map on rings R[I] → S sending a degree d element x to f(x)/(td)). These maps
agree on overlaps to give Spec S → Proj R[I]. The divisor cut out by (t) goes to the divisor cut out by
I ⊕ I2 ⊕ . . . by construction. Now we consider uniqueness of this map.

Note that the Spec St = (Spec S) \ V (t) → Proj R[I] \ V (I ⊕ I2 ⊕ I2 ⊕ . . . ) agrees with the map
Spec St → Spec R \ V (I)→ Spec R.

This is because of how we’ve defined the map and because away from V (I) and V (I⊕I2⊕. . . ) respectively,
Spec R and Proj R[I] are isomorphic. That is, if β : Proj R[I]→ Spec R, then β−1 : (R[I]\V (I⊕I2⊕ . . . )→
R \ V (I) is an isomorphism. (This is because Proj S (Uf ) ∼= β−1(D(f)). Observe this for D(x1), . . . , D(xn),
on which the ideal I becomes the unit ideal. Then this isomorphism becomes straightforward).

So, the map we’ve written down is an extension of a map on Spec St (to Spec R). Any other such map
would need this property too (looking at our diagram). But, Lemma 27.2 says there should be at most one
such extension. So our constructed map Spec S → Proj R[I] is unique.

�

Lemma 27.2 (Maps to a separated scheme extend over a Cartier divisor in at most one way). Suppose X
is a Z-scheme and Y is a separated Z-scheme. Suppose that D is an effective Cartier divisor on X. Then
any Z-morphism X \D → Y extends in at most one way to a Z-morphism X → Y .

Proof. To be done on HW! This is Exercise 10.2.G from Vakil. �

Remark 27.3. Hartshorne Corollary II.5.16 says that a scheme Y over Spec A is projective (over Spec A)
if and only if it is isomorphic to Proj S for some graded ring S, with S0 = A and S finitely generated by
S1 as an S0 algebra. (The proof is basically to write S as a quotient of a polynomial algebra). As a result,
Proj R[I] is projective over Spec R, and therefore separated over Spec R. Therefore, we can apply this in
the proof of the theorem.

Proposition 27.4. Suppose X is a variety over k (integral, separated scheme of finitely type over an
algebraically closed field k). Then:

(a) X̃ is also a variety
(b) π is birational, proper, surjective morphism

(c) If X is quasiprojective (resp. projective) over k, then so is X̃, and π is a projective morphism (can be

used to realize X̃ as a subscheme of some PnX).

Proof. See Hartshorne Proposition II.7.16. �

Remark 27.5. We’ll see later that if X is smooth over k and the center Y is smooth over k, then so is
BlYX.

Example 27.6. We now show how blow ups can be used to resolve maps. Let L be a line bundle on X,
with global sections s0, . . . , sn defining a map to PnA defined on some open U ⊆ X. Let F be the coherent
subsheaf of L generated by s0, . . . , sn. We define an associated coherent sheaf of ideals on X, using the
following.

For any open V ⊆ X such that L |V is free, let ψ : L |V → OV be a trivialization. Take I |V = ψ(F |V ).
This choice is independent of ψ (they would differ by an element of O∗X). So we get a well-defined coherent
sheaf of ideals I on X. Further, note that Ix = Ox if and only if x ∈ U . So, the subscheme associated to
I has support X \ U .
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Consider BlYX with map β : BlYX → X. We see that I pulls back to an invertible sheaf of ideals, so
now the β∗si generate an invertible coherent sheaf, meaning they yield a morphism ϕ̃ : BlYX → PnA. The

restriction to β−1(U) corresponds to ϕ under the (natural) isomorphism β : β−1(U)
∼=→ U .

BlYX

X PnA

U

ϕ̃
β

ϕ

ϕ

We now switch gears to differentials as well as tangent and cotangent sheaves on schemes. These are very
geometric notions, and we would like to have some analog of them.

Let X be a scheme. Let p ∈ X and consider the stalk OX,p with maximal ideal m. Recall that the Zariski
cotangent space is m/m2 and the Zariski tangent space is (m/m2)∨. This is fine point-wise, but we would like
to construct an analog of the tangent and cotangent bundles, such that at each point, the fiber aligns with
these definitions. Would like some of the old intuition to port over too: computing with Jacobian, etc.

Note a few things:

• Our construction will apply to schemes in general, not necessarily just ”smooth” ones. As a result
the cotangent sheaf may not necessarily be free, but it will be quasicoherent.

• Our construction will work relatively! For π : X → Y we will have ΩX/Y , the sheaf of relative
differentials (on X). Fiber-wise the sheaf at a point will be the cotangent vectors of the fiber of the
map.

We will speed through some of the properties, but they are analogous to statements from differential
geometry and one can find them expounded upon in our two textbooks.

As we would expect, we should tackle the affine case first.

Definition 27.7. An A-derivation of B into M is a map d : B →M such that

• d is additive
• d(bb′) = bdb′ + b′db
• da for all a ∈ A.

Definition 27.8. The module of relative differential forms of B over A is the B-module ΩB/A together
with A-derivation d : B → ΩB/A which satisfies the universal property

B ΩB/A

M

d

d′
f

for any B-module M and any A-derivation B → M , there exists a unique B-module homomorphism f :
ΩB/A →M such that d′ = f ◦ d.

Construction 27.9. We need to make sure such a module exists. One way to construct this module is to
just generate it symbolically: take the free B-module generated by symbols {db : b ∈ B} and mod out by the
required expressions to get the desired properties. That is, mod out by things like

d(b+ b′)− db− db′, d(bb′)− bdb′ − b′db, da

The derivation d : B → ΩB/A is given by sending b 7→ db. As a corollary, this module is generated by the db.
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28. Mar 19: Differentials, sequences of sheaves of differentials

Recommended reading: Hartshorne II.8, Vakil 21.1-21.2

Remark 28.1. Note that if B is generated, as an A-algebra, by xi ∈ B with relations rj polynomials in the
generators xi, then ΩB/A is generated by dxi subject to the relations drj = 0.

Example 28.2. Consider the cubic y2 = x3 − x. Let B = k[x, y]/(y2 − x3 + x) and A = k, with char k 6= 2.
Then ΩB/A is generated by dx and dy subject to the relation 0 = d(y2 − x3 + x) = 2ydy − 3x2dx − dx. So
we have:

2ydy = (3x2 − 1)dx

When y 6= 0, dx is a generator, as we can write dy in terms of dx on this open set. Similarly, when

(3x2 − 1) 6= 0, dy is a generator. So the bundle Ω̃B/A is trivializable on each of these patches. These cover

the whole curve, so Ω̃A/B is an invertible sheaf.

Example 28.3. Consider, in contrast, something singular like the cuspidal cubic y2 = x3. That is, set
B = k[x, y]/(y2−x3) and A = k with char k 6= 2, 3. Then ΩB/A will be generated by dx, dy with the relation:

2ydy − 3x2dx = 0

Then the fiber of ΩB/A over the origin, computed by tensoring with k[x, y]/(x, y), is rank 2, as it is generated

by dx, dy with no relation. Hence the sheaf Ω̃B/A cannot be locally free (and it fails at being locally free
around the singular point, as it should).

Proposition 28.4. If A′ and B are A-algebras, let B′ = B ⊗A A′. Then

ΩB′/A′ ∼= ΩB/A ⊗B B′

Furthermore, if S is a multiplicative system in B, then ΩS−1B/A
∼= S−1ΩB/A.

Proposition 28.5 (First exact sequence of cotangent sheaves). Suppose we have A → B → C a sequence
of ring morphisms. Then there is a natural exact sequence of C-modules:

ΩB/A ⊗B C ΩC/A ΩC/B 0
db⊗c 7→cdb dc 7→dc

The tensor on the left should eventually be thought of as a pulling back a sheaf to Spec C. The algebra
for this is straightforward, but it is also quite useful to think of/motivate this statement from the smooth
manifolds viewpoint. In that case, we can fill in the 0 → part of the sequence. In smooth manifolds, when

we have X
π→ Y → Z, we have

0→ TX/Y → TX/Z → π∗(TY/Z)→ 0

which dualizes to

0→ π∗ΩY/Z → ΩX/Z → ΩX/Y → 0

Which is the analogue of our sequence above. To get a sense for the (relative) tangent bundle sequence, it
can be be useful to think Z = a point, so that TW/Z = TW , the usual tangent bundle. Then this sequence
splits TX/Z = TX into vectors perpendicular vs parallel to the fiber. See Figure 21.2 in Vakil chapter 21 for
an illustration of this idea .

Proposition 28.6. Let B be an A-algebra. Let f : B ⊗A B → B be the diagonal morphism f(b⊗ b′) = bb′.
Let I = ker f . Consider B ⊗A B as a B-module via multiplication on left side. Then I/I2 inherits the
structure of a B-module.

Define a map d : B → I/I2 via db = 1⊗ b− b⊗ 1. Then 〈I/I2, d〉 is a module of relative differentials for
B/A.

Proof. Hartshorne cites Matsumura for this. You can also find a proof on page 20 of Mel Hochster’s commu-
tative algebra course notes https://dept.math.lsa.umich.edu/~hochster/615W10/615.pdf. Vakil also
has a proof (Theorem 21.2.24). �

https://dept.math.lsa.umich.edu/~hochster/615W10/615.pdf
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Proposition 28.7 (Second exact sequence: conormal sequence). Let B be an A-algebra, and I and ideal of
B. Let C = B/I. Then there is a natural exact sequence

I/I2 ΩB/A ⊗B C → ΩC/A 0δ db⊗c7→cdb

with δ given by i 7→ di⊗1. More formally, if we view I/I2 = I⊗BB/I, then it is the map d⊗ id : I⊗BB/I →
ΩB/A ⊗B C.

Proposition 28.8. Let B be a local ring which contains a field k isomorphic to its residue field B/m. Then
the map δ : m/m2 → ΩB/k ⊗B k of Proposition 28.7 is an isomorphism. This corresponds to the fact that
our cotangent sheaf, when we take the fiber over a point, gives the cotangent space at that point.

Proof. According to the Proposition 28.7, the cokernel is Ωk/k = 0, so δ is surjective. To show that it is
injective, it’s enough to show that the map

δ′ : Homk(ΩB/k ⊗B k, k)→ Homk(m/m2, k)

of duals is surjective. The term on the left is HomB(ΩB/k, k). By the universal property of ΩB/k, we identify
this hom set as the set Derk(B, k) of k-derivations of B into k.

If d : B → k is such a k-derivation, then δ′(d) is obtained by restriction to m. (Note that d(m2) = 0 by
the product rule and the fact that k = B/m.

We now check that δ′ is surjective. Let h ∈ Homk(m/m2, k). For any b ∈ B, write b = λ + c with
λ ∈ k = B/m, c ∈ m. This expression is unique. Define db = h(c) where c is the image of c in m/m2. Then δ
is a k-derivation of B into k, and certainly δ′(d) = h. Thus δ′ is surjective. �

Lemma 28.9. Let A,B be rings and M and A-module, and f : A→ B a ring homomorphism. Then:

HomA(M,NA) ∼= HomB(M ⊗A B,N)

via ϕ : M → NA 7→ ϕ̃ : M ⊗A B → N via ϕ(m ⊗ b) = bf(m). The inverse is (ψ : M ⊗A B → N) 7→ (m 7→
ψ(m⊗ 1B).

The following theorem will help us translate between smoothness and regularity.

Theorem 28.10. Let B be a local ring containing a field k isomorphic to its residue field. Assume, further-
more, that k is perfect (char 0 or Frobenius is an automorphism) and that B is a localization of a finitely
generated k-algebra. Then ΩB/k is a free B-module of rank equal to dimB if and only if B is a regular local
ring.

Proof. See Hartshorne Theorem II.8.8. �

As one expects, given a morphism of affines Spec B → Spec A, we expect Ω̃B/A to be our candidate for
the relative cotangent sheaf on Spec B. (Relative, in the sense that at each point it gives the cotangent
vectors to the fiber of Spec B → Spec A containing that point).

Let us finally define the sheaf of relative differentials, AKA the cotangent sheaf.

Let f : X → Y be a morphism of schemes. We consider the diagonal morphism ∆ : X → X ×Y X. ∆
gives an isomorphism of X onto its image ∆(X), which is a locally closed subscheme of X ×Y X (that is, a
closed subscheme of an open set of W ⊆ X ×Y X.

Definition 28.11. Let I be the sheaf of ideals of ∆(X) in W . We define the sheaf of relative differentials
of X over Y to be the sheaf ΩX/Y = ∆∗(I /I 2) on X.

29. Mar 21: More on cotangent sheaves

Remark 29.1. Note: if U = Spec A is an open affine of Y and V = Spec B an open affine of X such that
f(V ) ⊆ U , then V ⊗U V is an open affine of X ×Y X, and it is isomorphic to Spec (B ⊗A B). Note that
∆(X)∩ (V ⊗U V ) is the closed subscheme defined by the kernel of the diagonal homomorphism B⊗AB → B.

Then I /I 2 in the definition of ΩX/Y locally is the sheaf Ĩ/I2, where I is the kernel of said map. Then:

ΩV/U ∼= Ĩ/I2 ∼= Ω̃B/A (by Prop 28.6)
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Thus our definition of sheaf of differentials is compatible with the one before on affines. So another way to

think of ΩX/Y is that it is glued from the various Ω̃B/A = Ω̃U/V . The various d : B → ΩB/A glue to a map
d : OX → ΩX/Y a map of sheaves. Thus, we can port over many of our results.

Thought first, we toss out a quick definition

Definition 29.2. We denote by TX/Y the relative tangent sheaf H om(ΩX/Y ,OX) of a morphism π : X →
Y .

Definition 29.3. Note that ΩX/Y is not necessarily locally free, meaning we don’t necessarily have that
Ω∨∨X/Y

∼= ΩX/Y .

Proposition 29.4. Let f : X → Y be a morphism, and g : Y ′ → Y be another morphism to Y . Let
f ′ : X ×Y Y ′ → Y ′ be the base change. Then:

Ω(X×Y Y ′)/Y ′
∼= p∗1(ΩX/Y )

where p1 is the projection X ×Y Y ′ → X onto the first factor.

Proof. Follows from Proposition 28.4. �

Proposition 29.5. Let f : X → Y and g : Y → Z be morphisms of schemes. Then there is an exact
sequence of sheaves on X:

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

Proof. Follows from Proposition 28.5. �

Proposition 29.6. Let f : X → Y be a morphism of schemes, and i : Z → X a closed subscheme of X cut
out by ideal sheaf I / Then there is an exact sequence of sheaves on Z:

I /I 2 δ→ ΩX/Y ⊗OX
OZ = i∗ΩX/Y → ΩZ/Y → 0

Proof. Follows from Proposition 28.7. �

Remark 29.7. I /I 2 is often called the conormal bundle of Z in X. The motivation is the following.
Suppose i : Z → X is a closed immersion of smooth manifolds. Then normally you’d have

0→ TZ → i∗TX → NZ/Y → 0

Where NZ/Y is the normal bundle of Z in Y . That is, the normal space is the quotient of the tangent spaces.
Dualizing this sequence yields

0→ N∨Z/Y → i∗ΩX → ΩZ → 0

Which is the non-relative version of what we see above. Since I /I 2 is doing the duty of the sheaf on
the left, we call it the conormal sheaf/bundle. Note that its dual (I /I )∨, which we can call the normal
bundle/sheaf, will record what it should (”deformations” in the ambient space).

Remark 29.8. If the ideal I ⊆ B is generated by a regular sequence (x1, . . . , xr), then

(B/I)⊕r
∼=→ I/I2

(a1, . . . , ar)→ a1x1 + . . . arxr

realizes I/I2 as a free B/I-module of rank r.

Theorem 29.9 (Euler exact sequence). There exists an exact sequence of sheaves on PnA:

0→ ΩPn
A/Spec A → OPn

A
(−1)⊕(n+1) → OPn

A
→ 0

Proof. Let S = A[x0, . . . , xn] the homogeneous coordinate ring ofX. Let E be the graded S-module S(−1)n+1

with basis e0, . . . , en in degree 1. Define a homomorphism of graded S-modules E → S via ei 7→ xi. Let M
be the kernel, so that we have

0→M → E → S

of graded S-modules, which yields

0→ M̃ → OX(−1)⊕(n+1) → OX → 0
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E → S is not surjective, but it is surjective in degrees ≥ 1, so the sheaf map is surjective. You should think
of this as a multiplication map.

On the affine open D(xi), the map OX(−1)⊕(n+1) → OX looks like:

(g0, . . . , gn) 7→ g0x0 + · · ·+ gnxn

where the gi are homogeneous polynomials in x0, . . . , xn, x
−1
i of degree −1. (The multiplication will shift the

grading, hence why E has this twist down in each factor).

What is M̃? We want that it is ΩPn/Spec A. That is, we want to identify the kernel with the differentials.
We do this on each D(xi) in a compatible way. Without loss of generality, let us work on U0 on which the
projective space looks like Spec A[x1/x0, . . . , xn/x0]. Given a differential

f1(x1

x0
, . . . , xn

x0
)d(x1

x0
) + · · ·+ fn(x1

x0
, . . . , xn

x0
)d(xn

x0
)

We need to produce n+ 1 sections of O(−1) from this. If we were thinking in the analytic sense, we would
say

f1d

(
x1

x0

)
= f1

x0dx1 − x1dx0

x2
0

(quotient rule)

=

(
−x1

x2
0

f1

)
dx0 +

(
f1

x0

)
dx1

One can see a relation here: that

x0(”coeff of dx0”) + x1(”coeff of dx1”) = 0

and the coefficients are both homogeneous of degree −1. From this, we define:

(α0) = α : f1d(x1

x0
) + · · ·+ fnd(xn

x0
) 7→

(
−x1

x2
0

f1 − · · · −
xn
x2

0

fn,
f1

x0
, . . . ,

fn
x0

)
That is, α(d(

xj

x0
)) = (1/x0)2(x0ej − xje0).

We have to check a few claims:

• α agrees on overlaps: Let’s compare this map on patches U0 and U1. The general proof that it
agrees on overlaps is largely the same. On U0 ∩ U1 we have that xk/x0 = (xk/x1)(x1/x0). Thus we
have:

d

(
xk
x0

)
− xk
x1
d

(
x1

x0

)
=
x1

x0
d

(
xk
x1

)
So we have these two quantities, and one side is in terms of dividing by x0 and the other in terms
of dividing by x1. We need α0 of the left to be α1 of the right. We get the same thing both ways,
namely:

1

x0x1
(x1ek − xke1)

• α is injective. It is enough to check on patches. Looking at the latter coordinates, it is clear that
this maps to zero if and only if the fi coefficients are zero.

• α maps onto the kernel. Again, looking at this map, the latter n elements need to look like some
gi/x0 with the gi polynomials in the xj/x0, and when we let them freely range, the first is forced to
look like −

∑ xi

x2
0
gi.

�

We will use this next time to compute the canonical bundle of projective space, ∧nΩPn
A/Spec A.

30. Mar 31: Smoothness over k and regularity, canonical bundles, adjunction

Definition 30.1. A scheme X is nonsingular or smooth over k if it is locally of finite type, of pure dimension
n, and ΩX/k is locally free of rank n.

Theorem 30.2. Let X be an irreducible separated scheme of finite type over an algebraically closed field k.
Then ΩX/k is locally free of rank n = dimX if and only if X is regular at all of its closed points (you get the
rest by realizing that localizations of regular rings are regular).
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Theorem 30.3. Let X be a variety over k. Then there is an open dense subset U of X such that U is
smooth.

Proof. Utilize that if F is an OX -module and at some point x ∈ X we have Fx is locally free OX,x module,
then F is locally free on a neighborhood U of x. Then check at the generic point. �

Theorem 30.4. Suppose X is smooth over k and Y is a closed subscheme, also smooth over k, defined by
ideal sheaf I . Then the conormal exact sequence gains exactness on the left:

0→ N ∨
Y/X = I /I 2 δ→ ΩX/k ⊗OY → ΩY/k → 0

In this case, N ∨
Y/X is a locally free sheaf of rank r = codim(Y/X).

Again, dualizing, we get the perhaps more familiar normal bundle sequence.

0→ TY/k → TX/k → NY/X → 0

Now for some applications!

Definition 30.5. Let X be smooth (nonsingular) over k. We define the canonical bundle, to be ωX =
∧nΩX/k where n = dimX. .

Definition 30.6. If X is smooth and projective over k, then we define the geometric genus pg to be
dimk Γ(X,ωX). We will later see that it is also h0(X,ωX/k) when we define sheaf cohomology.

Theorem 30.7. The geometric genus is a birational invariant. That is, if X,X ′ are two birationally equiv-
alent nonsingular projective varieties over k, then

pg(X) = pg(X
′)

Proof. See Theorem II.8.19 in Hartshorne. This proof is neat, but we do not have time for it. �

Remark 30.8. One extends this to singular varieties by taking the genus of a smooth birational model. (For
curves: take the normalization).

Definition 30.9. We will eventually define the notion of arithmetic genus. This can differ from geometric
genus when the variety in question isn’t smooth. (e.g. nodal cubic in P3).

Remark 30.10. ωX really does earn its name: it’s the one geometrically significant bundle that you can
easily point to. It appears in many a formula and its behavior (in terms of ampleness, etc) can be used to
categorize some of the geometry of the variety (think general type vs. Fano vs. Calabi-Yau).

Alright, time for computing!

Corollary 30.11. Let X = Pnk . Then ωX = OPn(−n− 1).

Proof. From the Euler exact sequence we get:

det(OX(−1)⊕n+1) = det(ΩX/k)⊗ det(OX)

On the right we get ωX ⊗Ox = ωX . On the left we get OX(−1)⊗(n+1) = OX(−n− 1). Here, det of a locally
free sheaf of rank r means taking ∧r of that sheaf. The equation above follows from the analogous statement
for free modules (you showed this on HW 2). �

Remark 30.12. Could also manually compute from div of a rational section.

Corollary 30.13 (Adjunction formula). Let Y be a smooth subvariety of codimension r in a smooth variety
X. Then ωY = ωX ⊗ ∧rNY/X . In the case of r = 1, viewing Y as a divisor, let O(D) be the associated line
bundle on X. Then we get the adjunction formula:

ωY ∼= ωX ⊗O(D)⊗OY
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Proof. Take the conormal sequence:

0→ I /I 2 → ΩX ⊗Oy → ΩY → 0

Then taking determinants yields that ωx⊗OY ∼= ωY ⊗∧r(I /I 2). Top wedge power commutes with dualizing,
2, so we get that

ωY = ωX ⊗OY ⊗NY/X = ωX ⊗NY/X

Now we focus on the divisor case. Note that in this case, I = OX(−Y ), as the latter precisely imposes
the condition that the sections in KX(U) are regular and vanish on Y . Then I /I 2 = OX(−Y )⊗OY , and
we have NY/X

∼= OX(Y )⊗OY . Then we get:

ωY ∼= ωX ⊗OX(Y )⊗OY
�

Remark 30.14. You will often see adjunction stated in terms of divisors. Then it becomes:

KD = (KX +D)|D
where KX is the canonical divisor: i.e. a divisor such that O(D) is the canonical bundle. You also often see
this formula iterated to deal with complete intersections.

Corollary 30.15. Let D be a smooth hypersurface of degree d in Pn. Then:

ωD = OD(−n− 1 + d).

Example 30.16. Consider a smooth conic in P2. Then ωY ∼= OY (−1). In this case Y is the embedding of
P1 into the plane via a Veronese, and pulling back ωY to P1 yields

ωP1 ∼= OP1(−2)

which checks out. Also, observe that P1 has geometric genus 0.

Example 30.17. For a smooth cubic in P2, we get that ωY ∼= OY (3− 3) ∼= OY . Thus, a smooth cubic has
geometric genus 1.

Theorem 30.18 (Bertini’s theorem: roughly, generic hyperplane sections of smooth things are smooth). Let
X be a nonsingular closed subvariety of Pnk where k is algebraically closed. Then there exists a hyperplane
H not containing X, such that H ∩X is regular at every point. (If dimX ≥ 2, then H ∩X is irreducible,
and so H ∩X is smooth). The set of hyperplanes with this property is an open dense subset of the complete
linear system |H| ∼= (Pn)∗

Proof. See Hartshorne Theorem II.8.18. It’s a neat study of how the hyperplane equation looks in all the
various local rings. We do not have time for the proof, however. �

31. April 02: Right derived functors, sheaf cohomology intro

Before we dive into the nitty-gritty of sheaf cohomology and necessary cohomology background: if we have
an exact sequence of sheaves on some scheme X

0→ F ′ → F → F ′′ → 0

then taking global sections is only left exact. We would like some way to continue this sequence

0→ Γ(X,F ′)→ Γ(X,F )→ Γ(X,F ′′)→ H1(X,F ′)→ H1(X,F )→ H1(X,F ′′)→ H2(X,F ′)→ . . .

with the higher cohomology groups helping measure how the map on global sections fails to be exact (and
want to use these in general for measuring obstructions), and with tools to compute when H1(X,F ′) = 0 so
that we get exactness. One way to phrase the fact that taking global sections is exact when X is affine and
F ′ is quasicoherent is that

H1(X,F ′) = 0

for X affine and F ′ quasicoherent.

2One way to see that is you get a perfect pairing ∧pV × ∧pV ∗ via (v1 ∧ · · · ∧ vp, f1 ∧ · · · ∧ fp) 7→ det(fi(vj)). This is

nondegenerate.
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We will see that the right definition for the sheaf cohomology groups is the right derived functor of the
global sections functor.

Definition 31.1. Recall that a complex A• in an abelian category is a sequence

· · · d
i−2

−→ Ai−1 di−1

−→ Ai
di−→ Ai+1 di+1

−→ . . .

such that di ◦ di−1 = 0 for all i. (Or also phrased as d2 = 0).

Definition 31.2. The i-th cohomology of A• is

HpA• =
ker di

im di−1

(
=

cocycle

coboundary

)
Proposition 31.3. Given 0 → A• → B• → C• → 0 an exact sequence of complexes, there exists a long
exact sequence of cohomology:

· · · → HpA• → HpB• → HpC• → Hp+1A• → Hp+1B• → Hp+1C• → . . .

Its existence is gained from the snake lemma (specifically, you take c ∈ Hn(C) take a b ∈ Hn(B) that maps
to it. db is in the kernel of the map to C, so it must be the image of some a from An+1. Then the connecting
map sends c to the class of a).

Given an abelian category and A an object, the functor Hom(A, ?) is a covariant and left exact functor to
abelian groups. The functor Hom(?,A) is a contravariant left exact functor. That is, 0→ B′ → B → B′′ → 0
exact means

0→ Hom(B′′, A)→ Hom(B,A)→ Hom(B′, A)

is exact.

Definition 31.4. An object I in an abelian category is injective if Hom(?, I) is exact.

Definition 31.5. An injective resolution of A is the data of a complex I•, defined in degrees i ≥ 0, along
with a morphism ε : A→ I0 such that each Ii is injective and

0→ A
ε→ I0 → I1 → . . .

is exact

We say an abelian category has enough injectives if every object is a subobject of an injective object.
This implies that every object has an injective resolution: you may think of this as basically the
meaning of ”enough injectives.” (Any two injectives are, in that case, homotopy equivalent, in that you
have maps in each between the complexes in each direction such that their composition is homotopic to the
identity: i.e. induces identity map on cohomology)

Example 31.6. The injective objects in the category of abelian groups are the divisible groups– i.e. groups
where for any integer n and elements x, there is a y such that ny = x.

Construction 31.7. Suppose F : A → B is a covariant left exact functor between abelian categories.
Suppose A has enough injectives. We construct the right derived functors RiF , i ≥ 0, as follows. For
each A of A, pick an injective resolution. Then define

RiF (A) = Hi(F (I•)) = Hi
(

0→ F (I0)→ F (I1)→ . . .
)

These are the right derived functors RiF .

Theorem 31.8. With the same notation as above:

(a) For each i ≥ 0, the derived functor RiF is an additive functor A → B. (Additive, in that it respects
direct sums).

(b) There is a natural isomorphism F ∼= R0F .
(c) For each short exact sequence

0→ A′ → A→ A′′ → 0

we get morphisms δi : RiF (A′′)→ Ri+1F (A′) such that we get a long exact sequence:

· · · → RiF (A′)→ RiF (A)→ RiF (A′′)
δi−→ Ri+1F (A′)→ Ri+1F (A)→ . . .
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(d) Given a morphism of exact sequences

0 A′ A A′′ 0

0 B′ B B′′ 0

the δi as above form a commutative diagram, so that we can get morphisms between the long exact
sequences.

RiF (A′′) Ri+1F (A′)

RiF (B′′) Ri+1F (B′)

δi

δi

(e) I injective implies that RiF (I) = 0 for i > 0.

Definition 31.9. An object J of A is acyclic for F if RiF (J) = 0 for all i > 0

Proposition 31.10. If there is an exact sequence

0→ A→ J0 → J1 → . . .

where each J i is acyclic for F , then for each i ≥ 0 there is a natural isomorphism RiF (A) ∼= hi(F (J•)).

So you can instead compute the right derived functors with an acyclic resolution, which gives us a little
more leeway.

Proposition 31.11. If A is a ring, then the category of A-modules has enough injectives

Proposition 31.12. Let (X,OX) be a ringed space. Then Mod(OX) has enough injectives.

Proof. See Hartshorne Proposition III.2.2. Very roughly, at each point, OX,x modules have enough injectives
and ”assemble” this info to get Mod(OX) has enough injectives. �

Definition 31.13. We set

Hi(X, ?) = i-th right derived functor of Γ(X, ?)

Remark 31.14. From this definition, we get some nice properties immediately. We get that H0(X,F ) =
Γ(X,F ), we get additivity, we get long exact sequences.

Remark 31.15. Let (X,OX) be a ringed space. If A = Γ(X,OX), then for any OX -module F we have that
the cohomology groups of F have an A-module structure. Likewise, if X is a scheme over Spec B for some
ring B, the cohomology groups of F have a B-module structure. But do note that sometimes we want to
think about cohomology of sheaves of abelian groups F that do not necessarily have a multiplication action
by the structure sheaf.

Definition 31.16. A sheaf F on a ringed space (X,OX) is flasque or flabby provided that the restriction
maps are all surjective. That is, V ⊆ U implies F (U)� F (V ).

Remark 31.17. A common example of flasque sheaves are skyscraper sheaves.

Lemma 31.18. If (X,OX) is a ringed space, then any injective OX -module is flasque. (Note that taking
OX = Z guarantees existence of injective resolutions, and thus flasque resolutions, for general sheaves of
abelian groups on a ringed space).

Proof. Let U be open in X. By abuse of notation, we set OU = j!(OX |U ), which is the restriction of OX to
U , extended by zero outside U . Let I be an injective OX -module, and V ⊆ U be open sets. We have:

0→ OV → OU
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I is injective, so we get a surjection

Hom(OU ,I )→ Hom(OV ,I )→ 0

but lower shriek 3 is adjoint to restriction, so

Hom(OU ,I ) = HomOX |U (OX |U ,I |U ) = I (U)

So we have that restriction I (U)→ I (V ) is surjective. �

Proposition 31.19. Flasque sheaves are acyclic for Γ(X, ?). Thus, ”flasque resolutions” can be used to
compute sheaf cohomology.

Proof. Embed F in an injective I , and denote by Q the quotient.

0→ F → I → Q → 0

F is flasque, and I is injective and thus flasque. Thus, Q is flasque.4 Taking global sections yields

0→ Γ(X,F )→ Γ(X,I )→ Γ(X,Q)→ 0

since all the sheaves are flasque. Consider as well the exact sequence of sheaf cohomology. Since Hi(X,I ) =
0, we get H1(X,F ) = 0, and Hi(X,F ) = Hi−1(X,G ) for each i ≥ 2. G is flasque, so induction will yield
that all the higher cohomology Hi(X,F ) = 0. That is to say, the higher direct images of Γ(X, ?) vanish for
F and thus F is acyclic. �

Corollary 31.20. Let Y be a closed subscheme of X and F a sheaf of abelian groups on Y , and i : Y → X
the inclusion. Then

Hi(Y,F ) = Hi(X, i∗F )

Thus, we sometimes drop the i∗ notation and just write Hi(X,F ).

Proof. Note that injective sheaves are also flasque (see Lemma 31.18). If J • is a flasque resolution of F
on Y , then i∗J • will be a flasque resolution of i∗F , and we have Γ(Y,J i) = Γ(X, i∗J i), so we’ll get the
same cohomology groups. �

32. April 04: Properties and vanishing theorems of sheaf cohomology

Theorem 32.1. We have
Hi(X,F ) = 0 for all i > dimX

for all X a noetherian topological space of dimension n and F a sheaf of abelian groups on X.

Proof. See Hartshorne Theorem III.2.7. The proof is an induction on dimension. �

Proposition 32.2. We have

lim−→Hi(X,Fα)
∼=→ Hi(X, lim−→Fα)

Lemma 32.3. Let I be an injective module over a Noetherian ring A. Then Ĩ is a flasque sheaf on Spec A.

Proof. See Hartshorne Proposition III.3.4. �

Theorem 32.4. Suppose X is a Noetherian scheme. The following are equivalent:

(a) X is affine
(b) Hi(X,F ) = 0 for all quasicoherent F and i > 0
(c) H1(X,I ) = 0 for all coherent ideal sheaves I .

Proof.

3See Hartshorne exercise II.19 for more on extension by zero and lower shriek. Let j : U → X be inclusion of an open set.
Extension of F a sheaf on U by zero in general is done by taking j!F to be the sheafification of: V 7→ F (V ) if V ⊆ U and

V 7→ 0 otherwise. It is adjoint to the restriction functor in this caes. The general construction of the lower-shriek functor f! and
discussions of what its adjoint should be is more complicated.

4To see this: one can show 0 → G ′ → G → G ′′ → 0 with G ′ flasque implies 0 → G ′(U) → G (U) → G ′′(U) → 0 is exact.

So, let V ⊆ U . In the notation 0 → F → I → Q → 0, flasqueness of F means that f ∈ Q(V ) can be lifted to f ′ ∈ I (V ).
Then this extends to f ′′ ∈ I (U), since I is flasque. Then we have the image of f ′′ in Q(U) is an extension of f ∈ Q(V ), so
restriction maps on Q are surjective.
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• (i) ⇒ (ii): Let X = Spec A. Let F be quasicoherent, let M = Γ(X,F ). Take an injective resolution
in the category of A-modules:

0→M → I0 → I1 → . . .

This yields a flasque resolution:

0→ M̃ → Ĩ0 → Ĩ1 → . . .

so we can use this sequence to compute cohomology. Applying the global sections functor Γ(X, ?),
we recover the above sequence of modules, and we know this sequence is exact (since X affine and
all the terms as quasicoherent). Thus H0(X,F ) = M , and Hi(X,F ) = 0 for i > 0.

• (ii) ⇒ (iii): Immediate.
• (iii) ⇒ (i): One can use the hypothesis to show that X is covered by the Xf for f ∈ Γ(X,OX).

Namely, let U be an open affine of P a closed point, and set Y = X \ U We get:

0→ IY ∪{P} → IY → k(P )→ 0

The latter term is a skyscraper sheaf of the residue field k(P ) supported at P . Exactness can be
checked at the stalk level. We get:

Γ(X,IY )→ Γ(X, k(P ))→ H1(X,IY ∪{P}) = 0

so there is an element f ∈ Γ(X,IY ) that maps to 1, i.e. f ∈ IY such that fp ≡ 1 mod mp. Then
p ∈ Xf ⊆ U (because f vanishes on Y by construction). Further, Xf = Uf , so Xf is affine.

Quasicompactness implies that we only need finitely many Xfi to cover X. Denote the correspond-
ing elements f1, . . . , fr. Using our affine-ness criteria from HW 1, we need to check that f1, . . . , fr
generate the unit ideal in A = Γ(X,OX). Consider:

0→ F → O⊕rX → OX → 0

where O⊕rX → OX looks like (a1, . . . , ar) 7→
∑
fiai, i.e. it is a multiplication map. We want to show

that H1(X,F ) = 0, so that the map on global sections is surjective. Here F just denotes the kernel
sheaf of this morphism. By filtering:

F = F ∩ O⊕rX ⊇ F ∩ O⊕(r−1)
X ⊇ · · · ⊇ F ∩ OX

Each quotient in the filtration looks like a coherent sheaf of ideals in OX and thus has vanishing H1.
Considering each of the quotient sequences and the corresponding long exact sequence, we ”climb
up” the filtration and get that each F ∩ O⊕iX has vanishing H1. Thus, H1(X,F ) = 0. But then

Γ(X,O⊕rX )→ Γ(X,OX)

is surjective, meaning f1, . . . , fr generate the unit ideal.

�

These sheaf cohomology groups have some additional properties worth pointing out.

Proposition 32.5. We have the following properties of sheaf cohomology:

(a) If π : X → Y is any morphism of quasicompact separated A-schemes, and F quasicoherent on X, then
there is a natural morphism

Hi(Y, π∗F )→ Hi(X,F )

extending Γ(Y, π∗F )→ Γ(X,F ).
(b) If π : X → Y is an affine morphism between noetherian separated schemes, and F quasicoherent on X,

then the natural map on cohomology groups is an isomorphism

Hi(Y, π∗F )
∼=−→ Hi(X,F )

This is Hartshorne exercise III.4.2 and it is on your homework. When π is a closed embedding into
projective space, this isomorphism will help us translate between computations on projective schemes
and computations on projective space.
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Remark 32.6. It is worth noting that in practice, and especially in the scope of this course, you generally
will not have to compute cohomology by writing down an injective resolution and computing the cohomology
of the complex. You will usually compute it from long exact sequences, vanishing theorems, and using Cech
cohomology (which is much more ”concrete” and friendly for computing).

33. April 07: Čech cohomology, and cohomology of line bundles on P1

Let A be a noetherian ring. We will eventually see the following properties.

(1) H0(PnA,OPn
A

(m)) is a free A-module of rank
(
n+m
m

)
if m ≥ 0.

(2) Hn(PnA,OPn
A

(m)) is free of rank
( −m−1
−n−m−1

)
if m ≤ −n− 1.

(3) Hi(Pn,OPn
A

(m)) otherwise

Remark 33.1. There are a few observations to be made here:

• The cohomology vanishes in degree above n (consequence of previously mentioned theorem, but also
can be derived from the fact that PnA is covered by n+ 1 affines and that sheaf cohomology and Čech
cohomology agree for PnA)

• The cohomology groups are finitely generated A-modules. This is true for coherent sheaves on pro-
jective A-schemes.

• The top degree cohomology vanishes for m > −n − 1. This is an example of Kodaira vanishing.
Kodaira vanishing says, amongst other things, that for ample L we have

Hi(X,L ⊗ ωX/k) = 0

for i > 0. So, we get Hi(Pnk ,OPn
k
(d)) = 0 for d > −n− 1.

• The top cohomology group is one-dimensional for m = −n− 1 and A = k. Namely, observe that for
X = Pnk we have

h0(X,OX) = hn(X,OX(−n− 1)⊗O∨X)∨ = hn(X,ωX ⊗O∨X)∨

This is a first example of Serre duality:

Hi(X,E ) ∼= Hn−i(X,ωX ⊗ E ∨)∨

where E is a locally free sheaf of finite rank.

Definition 33.2. For a smooth scheme X, the tensor powers ωmX of the canonical bundle are called the
pluricanonical sheaves of X. The ranks of the global sections of the tensor powers, i.e. the h0(X,ωmX ), are
called the plurigenera of X. To refer to a specific tensor power, h0(X,ωmX ) is the m-th plurigenus of X.

Now for Čech cohomology! Useful computational tool when you have pretty explicit charts on a scheme.

Construction 33.3. Let X be a topological space with an open cover {Ui}i∈I . For J ⊆ I, we write:

UJ =
⋂
j∈J

Uj

Define the Čech complex to be:

Cp({Ui}i∈I ,F ) =
∏

i0<···<ip

F (Ui0,...,ip)

along with maps dp given by

dp : Cp({Ui}i∈I ,F )→ Cp+1({Ui}i∈I ,F )

α = (αi0<···<ip){i0,...,ip}⊆I 7→ dpα =

(
p+1∑
k=0

(−1)kαi0<···<îk<···<ip+1

∣∣∣
U{i0,...,ip+1}

)
{i0<···<ip+1}

One might find the following definition more clear: the map F (UI)→ F (UJ) is zero unless I ⊆ J . If I ⊆ J ,

then write J = {i0 < · · · < ip} and I = {i0 < · · · < îk < · · · < ip} (we abuse notation slightly when we need
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to care about the order of the elements in the set). Then we have

F (UI)→ F (UJ)

α 7→ (−1)kresUI

UJ
α

and the map Cp({Ui}i∈I ,F ) → Cp+1({Ui}i∈I ,F ) is extended from this. This data is called the Čech
complex associated to {Ui}i∈I .

Proposition 33.4. The Čech complex is a complex: d2 = 0.

Proof. The algebra here can be bashed out fairly straightforwardly: you’ll get two paths to removing two
elements, and you’ll get cancelling signs from these two computations. �

Definition 33.5. We denote
Ȟ({Ui},F ) = Hp(C•({Ui}i∈I ,F ))

While this is defined in general for a sheaf of abelian groups on a topological space X, in the context of
algebraic geometry we will usually be restricting our attention to X a scheme and {Ui} a cover by open
affines. Furthermore, you will almost always want the condition that X is noetherian and separated.

Remark 33.6. Note that we immediately get that H0 is the group of global sections. This follows from
sheaf axioms: taking the kernel of the first map is the data of sections on a cover that agree on overlaps.

Theorem 33.7. Suppose X is a noetherian and separated scheme, F quasicoherent. Then Ȟ({Ui},F )
is independent of the choice of affine open finite cover {Ui}. Hence in this case we can suppress the {Ui}
notation and refer to the Čech cohomology groups as Ȟ

i
(X,F ).

Remark 33.8. The proof is a bit of diagram bashing (see Vakil 18.2.3) The idea is to show thatHi({Ui}ni=0)→
Hi({Ui}ni=1) is an isomorphism when {Ui}ni=1 is an open affine cover. In that way, we can show that adding
an extra piece to a cover does not change cohomology. So take two separate covers, and refine them together,
and get that each cover gives the same cohomology as the refined cover.

The separated criterion is important for guaranteeing that that Ui ∩ Uj is affine (Hartshorne Exercise

II.4.3 from HW 2) as you need some vanishing theorems about (Čech) cohomology of quasicoherent sheaves
on affines. The noetherian criterion is important for guaranteeing X quasicompact (though we will want
specifically noetherian for statements later on).

Theorem 33.9. Let X be noetherian and separated. Let {Ui} be an open affine cover of X, and let F be
quasicoherent on X. Then for all p ≥ 0, we have(

Hp({Ui},F
)

= Ȟ
p
(X,F )

∼=−→ Hp(X,F )

In general: for X a topological space, {Ui} an open cover, you get a morphism (not necessarily an isomor-
phism, though).

Proof. See Hartshorne Theorem III.4.5. �

The following shows the computational usefulness of Čech cohomology. Writing down injection resolutions
is hard. Writing down flasque resolutions, while a bit better, can still be quite tricky! Whereas concrete
chart computations on Pn and some other stock projective schemes are not so bad.

Example 33.10. Consider the cohomology groups ofHi(P1,O(d)). We use the affine cover U0 = D(x0), U1 =
D(x1). Let u = x1/x0. Then we get

0→ O(d)(U0)×O(d)(U1)→ O(d)(U0 ∩ U1)→ 0

which, after trivializing, looks like

0 −→ k[u]× k[v = u−1]→ k[u, u−1] −→ 0

(p(u), q(v)) 7→ −udq(u−1) + p(u)

So we get that H1 is, as a group (specifically, k-vector space), k[u±1]/(udq(u−1) − p(u))p,q. If d ≥ 0 then
note that we can get 1, um, u−m in the set of things we’re modding out by, so H1(Pn,O(d)) = 0 in that case.
If d = −1, we still get that 1, um, u−m are getting killed off and H1(Pn,O(d)) = 0.
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What happens if d ≤ −2? In this case we have u−m getting zeroed out for |m| ≥ |d|, and any non-negative
degree monomials are also getting zeroed out. We get that u−1, u−2, . . . , ud+1 is a basis. So H1(Pn,O(d)) is

a vector space of dimension −d− 1 =
( −d−1
−d−1−1

)
, as we wanted.

One will often see the computation we’ve done framed as:

H1(Pn,O(d)) =

(
1

x0x1
k

[
1

x0
,

1

x1

])
d

Indeed we could’ve done our computation by looking at

0→ k[x0, x1, x
−1
0 ]d × k[x0, x1, x

−1
1 ]d → k[x0, x1, x

−1
0 , x−1

1 ]d → 0

If d ≥ −1, it is clear this map is surjective and thus H1 vanishes. If d ≥ −2, we get that

1

x0x
|d|−1
1

,
1

x2
0x
|d|−2
1

, . . . ,
1

x
|d|−1
0 x1

Remark 33.11. Through the lens of the first style of computation, consider H1(P1
k,OPn

k
(−2)) = 〈cu−1〉. We

get an isomorphism with the ground field k by taking the coefficient of u−1, but we could also interpret this
as taking the residue, which is an integration operation. This intuition is useful later on for Serre duality.

Theorem 33.12. Let X be a projective scheme over a noetherian ring A, and L very ample on X over
Spec A.

34. April 09: Cohomology of line bundles on projective space

We now compute the cohomology of line bundles on Pn. The usual proof you’ll see is to induct on dimension
and handle, for fixed n, all the OPn(d) at once.

Proposition 34.1. Let A be a noetherian ring and let Pn = PnA and OPn
A

(d) = O(d). Then:

(1) H0(Pn,O(d)) = A[x0, . . . , xn]d

(2) Hn(Pn,O(d)) =
(

1
x0...xn

A[ 1
x0
, . . . , 1

xn
]
)
d

(3) Hi(Pn,O(d)) = 0 for 0 < i < n. (And likewise for n < i and i < 0).

Proof. The first part (1) has been done previously, when we computed Γ(Pn,O(d)).

We proceed to the second part, (2). Let F = ⊕d∈ZO(d)). On some D(xi0...ik), we’d have

Γ(D(xi0 . . . xik),O(d)) =
(
A[x0, . . . , xn]xi0

...xik

)
d

and thus Γ(D(xi0 . . . xik ,F ) = A[x0, . . . , xn]xi0
...xik

and we recover data about O(d) by taking the d-th

graded piece. We consider the last chunk of the Čech complex:

· · · →
∏

0<···<î<...n

A[x0, . . . , xn]x0...x̂i...xn
→ A[x0, . . . , xn]x0...xn

Thus:

Hn(Pn,F ) =
A[x0, . . . , xn]x0...xn

im (
∏
A[x0, . . . , xn]x0...x̂i...xn

→ A[x0, . . . , xn]x0...xn
)

=
〈xa00 . . . xann |ai ∈ Z〉

〈xa00 . . . xann | at least one of ai ≥ 0〉
= 〈xa00 . . . xann : all ai < 0〉

=
1

x0 . . . xn
A[x−1

0 , . . . , x−1
n ]

and picking out the d-th graded piece yields the result of (2).
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We finish with proving (3). We do this via induction. Note that it is vacuously true for P1. Suppose the
statement is true up to dimension n− 1. We will show it is true for Pn. Consider a hyperplane H ∼= Pn−1 in
Pn. We have

0→ OPn(−1)→ OPn → i∗(OPn−1)→ 0

where we can consider the first map as multiplication by xn. Twisting by d and summing over all d we get:

0→
⊕
d∈Z
OPn(d− 1)→

⊕
d∈Z
OPn(d)→

⊕
d∈Z

i∗OPn−1(d)→ 0

And then taking the long exact sequence in cohomology:

0→ H0

(⊕
d∈Z
OPn(d− 1)

)
×xn→ H0

(⊕
d∈Z
OPn(d)

)
→ H0

(⊕
d∈Z

i∗OPn−1(d)

)
→ H1

(⊕
d∈Z
OPn(d− 1)

)
×xn→ . . .

Our next goal is to show that, for 0 < i < n, we have that

Hi

(⊕
d∈Z
OPn(d− 1)

)
×xn→ Hi

(⊕
d∈Z
OPn(d)

)
is an isomorphism. We proceed with this goal in mind.

By Homework 3 (affine maps induce isomorphism on cohomology), we may compute the i∗OPn−1(d) terms
on Pn−1. Namely, Hi(Pn,⊕d∈Z i∗(OPn−1(d)) = Hi(Pn−1,⊕d∈Z OPn−1(d)). Then the Hi(⊕d∈Z OPn−1(d)) = 0
for 1 ≤ i ≤ n− 2. This yields chunks of the sequence like

0→ Hi

(⊕
d∈Z
OPn(d− 1)

)
×xn→ Hi

(⊕
d∈Z
OPn(d)

)
→ 0

for 1 < i < n− 1. So now we just need to check the isomorphism at i = 1, n− 1. For i = 1 we get

H0

(⊕
d∈Z
OPn(d− 1)

)
×xn→ H0

(⊕
d∈Z
OPn(d)

)
→ H0

(⊕
d∈Z

i∗OPn−1(d)

)
→ H1

(⊕
d∈Z
OPn(d− 1)

)
×xn→ H1

(⊕
d∈Z
OPn(d)

)
→ 0 . . .

The second map being surjective means that we get

0→ H1

(⊕
d∈Z
OPn(d− 1)

)
×xn→ H1

(⊕
d∈Z
OPn(d)

)
→ 0 . . .

is exact. Likewise, when looking at

0→ Hn−1

(⊕
d∈Z
OPn(d− 1)

)
×xn→ Hn−1

(⊕
d∈Z
OPn(d)

)
→ Hn−1

(⊕
d∈Z

i∗OPn−1(d)

)
δ→ Hn

(⊕
d∈Z
OPn(d− 1)

)
×xn→ Hn

(⊕
d∈Z
OPn(d)

)
→ 0

with our knowledge of the top-degree cohomology of projective space, the connecting morphism must be
δ = ×x−1

n . In particular, this map is injective. Thus we get

0→ Hn−1

(⊕
d∈Z
OPn(d− 1)

)
×xn→ Hn−1

(⊕
d∈Z
OPn(d)

)
→ 0

is exact. So, we’ve shown that multiplication by xn is an isomorphism on the middle degree terms. This is
only possible if these modules are zero.

To see why: we can show that Hi(Pn,F )xn = 0. Localization and cohomology commute in this case 5,
so if we localized the Čech compex for computing Hi(Pn,F ), it would compute Hi(Pn,F )xn

. But this also
computes Fxn

on D(xn), and all the higher cohomology groups on affine schemes vanish for quasicoherent

5localization commutes with quotients, images, etc
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sheaves. So we get that Hi(Pn,F )xn = 0. So, every element of Hi(Pn,F ) is killed by a power of xn. But if
multiplication by xn is an isomorphism, then it must be that Hi(Pn,F ) = 0. �

35. April 11: A vanishing theorem of Serre; looking towards Serre duality

This computation shows that tensoring with sufficient powers of a very ample line bundle leads to vanishing
higher cohomology, at least for line bundles. We in fact have a stronger version of this statement. First, a
lemma.

Lemma 35.1. Every coherent sheaf F on X = Pnk can be written as

n⊕
i=1

OX(ei)→
m⊕
i=1

OX(di)→ F → 0

Proof. By Theorem 18.9, a sufficiently high twist of F is finitely globally generated. That is, we have a
surjection

m⊕
i=1

OX → F (n)→ 0

The kernel is finitely globally generated as well, so we get
n⊕
i=1

OX →
m⊕
i=1

OX → F (n)→ 0

Then twisting down yields
n⊕
i=1

OX(−n)→
m⊕
i=1

OX(−n)→ F → 0

�

Theorem 35.2. Let X be projective over a noetherian ring A and L a very ample invertible sheaf on X
over Spec A. Let F be a coherent sheaf on X. Then:

(1) for each i ≥ 0, Hi(X,F ) is a finitely generated A-module
(2) there is an integer n0 such that for each i > 0, and n ≥ n0, we have

Hi(X,F ⊗L n) = 0

Proof. Since L is very ample on X over Spec A, we have a closed immersion i : X → PrA such that
L = i∗OPr (1). If F is coherent on X, then i∗F is coherent on PrA 6 and the cohomology is the same because
this morphism is affine. More precisely, we have:

Hi(PrA, i∗F ⊗Pr O(m)) = Hi(PrA, i∗(F ⊗X i∗(O(m)))) (projection formula (HW 2))

= Hi(PrA, i∗(F ⊗X Lm))

= Hi(X,F ⊗X Lm) (i affine)

So it’s enough to show this statement for X = PrA.
Note that (a) and (b) are true for any sheaf of the form OX(q). Thus it is true for any direct sum of sheaves

of this form. Next, our goal is to show this for arbitrary coherent sheaves. We do a descending induction on
i, the degree of the cohomology group, on both statements collectively (noting that it is immediately true for
i > r because Pr is covered by r+ 1 affines). Firstly, note that any coherent F can be written as a quotient
of sheaf of the form E = ⊕ki=1OX(qi). Then fill in the kernel to get:

0→ R → E → F → 0

E and F are coherent, and so R is coherent as A is noetherian. Consider the long exact sequence on
cohomology.

· · · → Hi(X,E )→ Hi(X,F )→ Hi+1(X,R)→ . . .

6pushforward by finite morphisms preserves coherent sheaves. Locally these maps look like Spec B → Spec A where A→ B
is finite. Then this correponds to M being finite as a B module and B being finite as an A module implies M is finite as an A
module.
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The module on the left is finitely generated by computation, and the module on the right is finitely generated
by inductive assumption. A is noetherian, so the middle is finitely generated too. So (a) is fine.

To prove (b): twist the sequence on sheaves and take cohomology to get

· · · → Hi(X,E (n))→ Hi(X,F (n))→ Hi+1(X,R(n))→ . . .

For n past some threshold, the module on the left vanishes by direct computation. For n past some threshold,
the module on the right vanishes because of induction. Thus Hi(X,F (n)) vanishes past some threshold Ni.
Since there are only finitely many i involved and the E ,R are fixed, we can take maxes to get a cutoff/treshold
N that works for all i. So, we are done. �

The next order of business will be Serre duality.

Theorem 35.3 (Serre duality for smooth projective k-schemes). Let X be a smooth projective variety of
dimension n over an algebraically closed field k. Then for all i ≥ 0, and F coherent on X, there are natural
functorial maps

θi : Exti(F , ωX/k)→ Hn−i(X,F )∨

that are, in fact, isomorphisms. In the case of F locally free of rank r (that is, F corresponds to the
sheaf of sections of a bundle), we have Exti(F , ωX/k) = Exti(OX ,F∨ ⊗ ωX/k) = Hi(X,F∨ ⊗ ωX/k). After
relabeling F to E ∨ ⊗ ωX/k, we get the phrasing of Serre duality that most people first encounter:

Hi(X,E ) ∼= Hn−i(X,ωX/k ⊗ E ∨)∨

There are ways to relax the smoothness conditions, but we will not get around to such versions. Further-
more, we will prove the version for Pn only, but that will demonstrate some of the overall ideas.

36. April 14: Ext, Serre duality, proof in the projective space case

Let (X,OX) be a ringed space, and F ,G be OX modules. Recall that Hom(F ,G ) = HomX(F ,G ) is the
group of OX -module homomorphisms, and H om(F ,G ) is the ”sheafy” version. That is,

H om(F ,G )(U) = HomOX |U (F |U ,GU )

For fixed F , we have that Hom(F , ?) is a left exact covariant functor from the category of OX -modules
Mod(X) to the category of abelian groups. Similarly, H om(F , ?) is left exact covariant functor from Mod(X)
to itself. Recall that Mod(X) has enough injectives. Thus the following construction is valid.

Definition 36.1. Let (X,OX) be a ringed space and F and OX -module. Then set Exti(F , ?) to be the
i-th right derived functor of Hom(F , ?) and E xti(F , ?) to be the i-th right derived functor of H om(F , ?).

We get the usual nice properties (additivity, Ext0 is Hom, long exact sequences, higher Ext groups vanish
when the second entry is injective, and analogous statements for sheaves).

Remark 36.2. Note that Hom(?,F ) is contravariant left exact. One would want to try to compute its right
derived functor with projective resolutions, but Mod(X) does not necessarily have enough projectives! Here
a projective object is one such that Hom(P, ?) is exact.

Remark 36.3. However, one can see that Exti(?,G ) has some derived-like properties, even if it cannot be
constructed as a derived functor. Namely, we can still get long exact sequences from it. We will see that
Exti(?,G ) is a contravariant δ-functor, though we will not define this term for another page or so.

Let 0→ F1 → F2 → F3 → 0 be an exact sequence of OX modules on a ringed space (X,OX). Take an
injective resolution:

0→ G → I 0 → I 1 → I 2 → . . .

Using that Hom(?,I ) is exact, we get a short exact sequence of complexes

0→ Hom(F3,I
•)→ Hom(F2, I

•)→ Hom(F1,I
•)→ 0

and taking the long exact sequence in cohomology will get you a long exact sequence of the Exti(Fj ,G ).

To make our lives a bit easier, here some some nice properties.

Lemma 36.4. If I is an injective object in Mod(X), then for any U ⊆ X open, I |U is an injective object
in Mod(U).
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Proof. See Lemma III.6.1 in Hartshorne. �

Proposition 36.5. For U ⊆ X, we have

E xtiX(F ,G )|U ∼= E xtiU (F |U ,G |U )

Proof. See Proposition III.6.2 in Hartshorne. �

Proposition 36.6. For any G ∈Mod(X) we have:

(1) E xt0(OX ,G ) = G
(2) E xti(OX ,G ) = 0
(3) Exti(OX ,G ) ∼= Hi(X,G ) for all i ≥ 0

Proof. H om(OX , ?) is the identity functor, and so the first two bullet points follow. The functors Hom(OX , ?)
and Γ(X, ?) are equal, so their derived functors are equal, which shows (c). �

Proposition 36.7. Let E be a locally free sheaf of finite rank. Recall that E ∨ = H om(E ,OX). Then for
any OX -modules F ,G we have:

Exti(F ⊗ E ,G ) = Exti(F ,E ∨ ⊗ G )

Proof. Note that the i = 0 case just says that

Hom(F ⊗ E ,G ) = Hom(F ,E ∨ ⊗ G ),

which you showed on Homework 2. For i > 0 note that I injective implies I ⊗ E is injective, so you can
get a relationship between the resolutions/use some properties of δ-functors to get equality of the Exts. It
helps that tensoring with locally free sheaves is exact (look at it stalk-wise– you are tensoring with O⊕rX,p so

you get M⊕rp ). See Hartshorne Proposition III.6.7 for more details. �

Definition 36.8. Let A,B be abelian categories. A covariant δ- functor from A to B is a collection of
indexed functors T = (T i)i≥0 and morphisms δi : T i(A′′) → T i+1(A′) for each short exact sequence 0 →
A′ → A→ A′′ → 0 and each i ≥ 0 such that

(1) For each such short exact sequence, there is a long exact sequence

0→ T 0(A′)→ T 0(A)→ T 0(A′′)
δ0→ T 1(A′)→ . . .

(2) for each morphism of short exact sequences

0 A′ A A′′ 0

0 B′ B B′′ 0

the δ’s give a commutative diagram

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

δi

δi

Definition 36.9. A δ-functor T = (T i) : A→ B is universal if, given any other δ-functor T ′ = (T ′)i : A→
B and any morphism f0 : T 0 → (T ′)0 there exists a unique sequence of morphisms f i : T i → (T ′)i for each
i ≥ 0, which commute with the δi for each short exact sequence.

Remark 36.10. If F : A→ B is covariant and additive, then there can be at most one (up to iso) universal
δ-functor T with T 0 = F .

Definition 36.11. An additive functor F : A → B is effacable if, for each object A in A, there is a
monomorphism u : A → M for some M with F (u) = 0. It is coeffaceable if for each A there exists an
epimorphism v : P → A such that F (v) = 0.
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Theorem 36.12. Let T = (T i) be a covariant δ-functor from A to B. If T i is effaceable for each i > 0, then
T is universal.

We will deal with contravariant δ-functors, so just reverse the arrows in all the definitions. In the
proof of Serre duality, we’ll want to show two contravariant δ-functors are the same– we’ll do so by showing
they’re both universal and have the same T 0. So to do this, we’ll need to show they’re both coeffaceable .

As with the case of Poincaré duality, we crucially establish a perfect pairing.

Theorem 36.13 (Serre duality for projective space). Let X = Pnk for a field k. Then:

(1) Hn(X,ωX) ∼= k. Fix such an isomorphism:
(2) for any coherent sheaf F on X, the natural pairing

Hom(F , ωX)×Hn(X,F )→ Hn(X,ωX) ∼= k

is a perfect pairing of finite dimensional k-vector spaces.
(3) for every i ≥ 0, there is a natural functorial isomorphism

Exti(F , ωX)
∼=−→ Hn−i(X,F )∨,

which, for i = 0, is the one induced by the pairing of (b).

Proof.

• We computed, via Euler exact sequence, that ωX = OX(−n − 1). From our computations of coho-
mology of line bundles on projective space, we know that Hn(X,OX(−n− 1)) is one-dimensional as
a k-vector space.

• A homomorphism of F to ω induces a map of cohomology groups Hn(X,F )→ Hn(X,ω). (This is
true in general for sheaf cohomology, but is easier to see through the lens of Čech cohomology). This
gives the pairing– now it remains to show that it is perfect. If F ∼= O(q), then

Hom(F , ω) = Hom(OX(q), ω) = Hom(OX , ω(−q)) = H0(X,ω(−q))

We now consider the pairing

H0(X,OX(−q − n− 1))×Hn(X,OX(q))→ Hn(X,ωX) = Hn(X,OX(−n− 1))

If q > −n−1 both groups are zero and the pairing is trivially perfect. If q ≤ −n−1, then the pairing
is given by

(xm0
0 . . . xmn

n ) · (x`00 . . . x`nn ) = (xm0+`0
0 . . . xmn`n

r )

where
∑
mi = −q−n−1 and

∑
`i = q. The polynomial on the right only zeroes out inHn(X,OX(−n− 1))

if any of the mi + `i ≥ 0. Thus the pairing is perfect, and for xm0
0 . . . xmr

r in the left group, its dual

is x−m0−1
0 . . . x−mr−1

r in the right group (note that it has the correct degree!).
So: we have established the pairing for line bundles. Additivity will give us that the pairing is

perfect for sums of line bundles. Now, let F be an arbitrary coherent sheaf. By the lemma. we get
that there are

E1 → E0 → F → 0

with Ei sums of line bundles OX(qi). Hom(?, ω) and Hn(X, ?)∨ are contravariant and left-exact, so
we get

0 Hom(F , ω) Hom(E0, ω) Hom(E1, ω)

0 Hn(X,F )∨ Hn(E0, ω)∨ Hn(E1, ω)∨

∼= ∼= ∼=

Then the five lemma implies that Hom(F , ω)→ Hn(X,F )∨ is an isomorphism (add another column
of zeroes to the left to get five columns and the desired isomorphism being the middle one).

• Both sides (Exti(?, ω), Hn−i(X, ?)∨) are contravariant δ-functors, indexed by i. We have that the
T 0 are isomorphic by part (b). So it remains to show they are coeffaceable. Note that we need
coeffaceable because these are contravariant.

Given F coherent, we know that we can write

E = ⊕kj=1O(−q)→ F → 0
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with q >> 0. So we have this epimorphism going to our F . Then

Exti(E , ω) = ⊕kj=1Exti(O(−q), ω) = ⊕kj=1Exti(OX , ω(q)) = ⊕kj=1H
i(X,ω(q)) = 0

for i > 0 and q large. On the other hand, we see

Hn−i(X,E )∨ = ⊕kj=1H
n−i(X,O(−q))∨ = 0

for i > 0 and q > 0. Thus both sides are coeffaceable for i > 0. So both δ-functors are universal with
the same starting functor, hence isomorphic.

�

37. April 16: Dualizing sheaves, flat modules, flat morphisms

To generalize Serre duality, one looks to the importance of (a), (b).

Definition 37.1. Let X be a proper scheme of dimension n over a field k. A dualizing sheaf for X is a
coherent sheaf ω◦X on X with a trace morphism t : Hn(X,ωX)→ k such that for all coherent sheaves F on
X, the natural pairing

Hom(F , ω◦X)×Hn(X,F )→ Hn(X,ω◦X)

composed with t afterwards gives an isomorphism Hom(F , ω◦X)→ Hn(X,F )∨.

If they exist, a dualizing sheaf (with its trace morphism) is unique (up to unique isomorphism). They exist
for X proper over k, though showing it for schemes projective over k tends to be easier. As one would expect,
the construction of ω◦X should somehow be ”cotangent-y.” For X smooth, the dualizing sheaf is indeed ωX/k.

In general: it is E xtN−dimX
OPN

(i∗OX , ωPN ). There is a way to put an OX -module structure on this.

One can then show that Exti(?, ω◦X) is coeffaceable for i > 0, so we get a universal contravariant δ-

functor, and then Hn−i(X,F )∨ is another contravariant δ-functor, so we get morphisms θi : Exti(F , ω◦X)→
Hn−i(X,F )∨. If X is smooth (in fact, Cohen-Macaulay and equidimensional is enough) then these maps
will be isomorphisms. The proof of Serre duality for projective schemes takes plenty of inspiration from the
projective space case, using certain vanishings.

Now, onto the notion of flatness. Flat morphisms help give us a notion of a ”nice, continuous” family of
schemes. A lot of the example families we’ve written down, and that one could try to write down by hand,
are flat.

A family of schemes is a morphism f : X → Y , and the members of the family are the fibers

Xy = X ×Y Spec k(y)

Remark 37.2. To study families, one often wants some sort of relative notion of cohomology: the ”coho-
mology of X over Y ” or ”cohomology along the fibers of X → Y .” Thus, some of the details and proofs in
the flat morphisms chapter of Hartshorne use higher direct images. We don’t have time for this, and we’ll be
skipping many of the proofs even when they don’t require this. At this time, the most useful thing for us is
to see some of the main results (criteria for flatness, existence of flat limits) and do some computations.

Definition 37.3. Let A be a ring, M an A-module. We say M is flat over A if the functor M ⊗A ? is exact.
(It is always right-exact, now we ask that it is left-exact too). If A → B is a ring homomorphism, B is flat
over A if it is flat as an A-module.

Proposition 37.4.

(a) M is flat over A ⇐⇒ for every finitely generated ideal a in A, the map a⊗M →M is injective.
(b) (Base extension) If M is a flat A-module and A→ B a ring hom, then M ⊗A B is a flat B-module
(c) (Transitivity) If B flat A-algebra and N a flat B-module, then N is a flat A-module
(d) (Localization) M is flat over A if and only if Mp flat over Ap for all p ∈ Spec A.
(e) If 0→M ′ →M →M ′′ → 0 exact sequence of A modules an M ′,M ′′ are flat, then M is flat. If M,M ′′

both flat then M ′ is flat.
(f) If M is a finitely generated module over a local noetherian ring A, then M is flat if and only if M is free.
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Definition 37.5. Let f : X → Y be a morphism of schemes, and let F be an OX -module. F is flat over Y
at a point x ∈ X provided that the start Fx is a flat Oy,f(x)-module. Here Fx is made an Oy,f(x) module
via the map

f ] : Of(x),Y → Ox,X
We say F is flat over Y if it is flat at every point of X. We say X is flat over Y if OX is flat over Y .

Proposition 37.6.

(a) An open immersion is flat
(b) Base change: f : X → Y a morphism, and F an OX -module flat over Y . g : Y ′ → Y a morphism. Let

X ′ = XxY Y
′ and f ′ : X ′ → Y ′ the second projection, and F ′ = p∗1(F ). Then F ′ is flat over Y ′.

(c) Transitivity: If f : X → Y and g : Y → Z are morphisms, and F an OX -module flat over Y , and
suppose Y is flat over Z. Then F is flat over Z.

(d) Let A→ B be a ring homomorphism and M a B-module. Let f : Spec B → Spec A be the corresponding

morphism of affine schemes. Then F = M̃ is flat over Y if and only if M is flat over A.
(e) Let X be a noetherian scheme and F a coherent OX -module. Then F is flat over X if and only if it is

locally free. (Here flatness is relative to the identity map X → X, i.e. tensoring with F is exact).

38. April 18: Properties of and criteria for flatness

Corollary 38.1. As a corollary to the last one: suppose f : X → Y is a finite morphism and Y is Noetherian.
Then f is flat ⇐⇒ f∗OX is locally free.

Proposition 38.2. Let f : X → Y be a flat morphism of schemes of finite type over a field k. For any
x ∈ X, set y = f(X). Then:

dimx(Xy) = dimxX − dimy Y

here dimxX is the dimension of the local ring Ox,X , ”the dimension of X at x.”

Corollary 38.3. Let f : X → Y be a flat morphism of schemes of finite type over k, and Y irreducible. The
following are equivalent.

(i) every irreducible component of X has dimension dimY + n,
(ii) for any point y ∈ Y (not necessarily closed!), every irreducible component of the fiber Xy has dimension

n.

Proposition 38.4 (Criterion 1). Let f : X → Y be a morphism of varieties over k. Assume X,Y are
regular. Then f is flat if and only if every fiber has dimension dimX − dimY .

Remark 38.5. One can relax the conditions slightly to Y regular and X Cohen-Macaulay. This result is
usually know as miracle flatness.

Definition 38.6. A point x of a scheme X is an associated point of X if the maximal ideal mx is an
associated prime in the local ring OX,x. That is, there is an element of OX,x whose annihilator is mx.

Remark 38.7. What you should be envisioning in this case is generic points of irreducible components or
embedded points. (Technically by embedded point we mean associated point that is in the closure of another
associated point, which would make this a bit circular, but we can often approach embedded points with a
more intuitive understanding– see below).

Example 38.8. Consider Spec k[x, y]/(xy, y2), which is an affine line with an embedded point. The generic
point is (y) and the embedded point is (x, y). You might draw this as a line with a thicker dot at the origin,
or perhaps with a dot and tangent vector pointing perpendicular to the line y = 0. If we ”remove” the line
by taking the quotient ideal (xy, y2) : (y), we get the point (x, y) left over.

Your mental picture of embedded points should be things of this sort.

Proposition 38.9 (Criterion 2). Let f : X → Y be a morphism of schemes, with Y integral, regular,
dimY = 1. Then f is flat if and only if every associated point of X maps to the generic point of Y .

If X is reduced, this says every irreducible component of X dominates Y .
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Remark 38.10. Note that a morphism f : X → Y with X,Y irreducible is dominant if and only if the
generic point of one goes to the generic point of the other. This can be checked quickly with properties of
closures, and reflects that the image of the generic point captures something about ”generic behavior” of the
map.

Remark 38.11. Regularity is certainly important in these criteria: consider the map A1 → X where X is
the cuspidal cubic Spec k[x, y]/(y2 − x3) in A2. This has equidimensional fibers, but is not flat. One way to
see this is k[t] is not flat over k[t2, t3]. (You would need it to be (locally) free: it is not!)

Proposition 38.12 (Criterion 3). Let T be an integral Noetherian scheme, and X ⊆ Pn×T = PnT be a closed
subscheme. Then X → T is flat if and only if the Hilbert polynomial pt of the fiber Xt ⊆ Pn × k(t) = Pnk(t)

is independent of t.

Definition 38.13. Recall that the Hilbert polynomial of a projective variety X over a field k is taken by
considering the function

m 7→ dimk k[X]m = dimk Γ(X,OX(m))

(i.e. the dimension of the) d-th graded piece of the homogeneous coordinate ring) and taking the polynomial
that aligns with this function for m >> 0. In general, we can take the Hilbert polynomial of a graded
k[x0, . . . , xn] algebra by looking at m 7→ dimk Sm for m� 0.

Proposition 38.14. Let X be a subvariety of some Pr. Then we can compute the Hilbert polynomial as
χ(OX(m)). This follows from:

χ(OX(m)) =
∑
i

(−1)n dimkH
i(X,OX(m)) = dimkH

0(X,OX(m)) = dimk Γ(X,OX(m))

which utilizes that, for coherent sheaves on projective space, we have Hi(X,F (m)) = 0 for i > 0 and m� 0.

Proposition 38.15. The Hilbert polynomial of a degree d hypersurface X = V (f) in Pn is given by

pX(m) =

(
n+m

m

)
−
(
n+m− d
m− d

)
Proof. One can compute this in one of two ways. One is to see that in k(X), the degree d piece will eventually
be computed by

dimk k[x0, . . . , xn]m − dimk k[x0, . . . , xn]m−d

as the terms getting zeroed out in (k[x0, . . . , xn]/(f))m are things of the form

(degree d−m polynomial)·f
One can also compute this from the exact sequence:

0→ OPn(−d)
×f→ OPn → OX → 0

then twist to get

0→ OPn(m− d)
×f→ OPn(m)→ OX(m)→ 0

and use additivity of Euler characteristic. �

Proposition 38.16. The degree of the Hilbert polynomial aligns with the dimension of the scheme. The

leading coefficient of the Hilbert polynomial is deg(X)
dim(X)! .

Example 38.17. AnA → Spec A is flat, because A[x1, . . . , xn] is a free (and thus flat) A-module.

Example 38.18. Spec k[x, y]/(x − y2) → Spec k[x] is flat because it dominates the target (and the source
is reduced).

Example 38.19. Spec k[x, y]/(xy, y2) → Spec k[x] is not flat, because the embedded point does not go to
the generic point. It is induced by the ring map k[x]→ k[x, y]/(xy, y2), and the preimage of the ideal (x, y)
is (x), which is not the generic point. (Note that Criterion 1 does nothing for us here, as k[x, y]/(xy, y2) is
not regular: the tangent space at the origin is too big).
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Example 38.20. As mentioned, Spec k[t]→ Spec k[x, y]/(y2−x3) coming from k[x, y]/(y2−x3) = k[t2, t3]→
k[t] is not flat.

Example 38.21. Spec k[x, y, t]/(xy − t) → Spec k[t] is flat. There are a couple of ways to see this: the
fibers are equidimensional and the target and source are regular. Alternatively, the Hilbert polynomial is
constant (for this you’d need to consider the projective space analogue and then use that open immersions
and compositions of flat maps are flat).

For t 6= 0 the fibers look like smooth curves xy = c in the plane. At t = 0 the fiber degenerates to a
reducible conic xy = 0.

Example 38.22. Consider the blowup of the projective plane at the origin. Then BlpP2 → P2 is not flat
(source and target are smooth, but the fiber dimension jumps).

39. April 21: Flat limits, examples, Hilbert polynomials of unions

Proposition 39.1. Let Y be a regular integral scheme of dimension 1, let P ∈ Y be a closed point, and
let X ⊆ Pn × (Y \ P ) be a closed subscheme flat over Y \ P . Then there exists a unique closed subscheme
X ⊆ Pn × Y , flat over Y , whose restriction to Pn × (Y \ P ) is X.

Proof. Take X to be the scheme-theoretic closure of X in Pn × Y . The associated points of X are the same
as the associated points of X, so by Criterion 2 X is flat over Y . Further, this extension is unique: other
extensions would have associated points mapping to P . �

Remark 39.2. This lemma means that flat limits exist for families over punctured curves. That is, the
Hilbert scheme is proper. (You should think of the Hilbert scheme as a moduli space that parametrizes
subschemes of Pnk with the same Hilbert polynomial).

Example 39.3. A simple example: consider Spec k[x, t, t−1]/(x2 − t) → Spec k[t, t−1]. The limit family is
Spec k[x, t]/(x2 − t)→ Spec k[t] and the flat limit at t = 0 is k[x]/(x2).

Example 39.4. Consider two skew lines in P3 = Proj k[x0, x1, x2, x3]. Let’s see what happens when we
collide them at a point. We just care about the behavior near the collision point, so let’s work in an affine
chart Spec k[x, y, z]. Consider one line L : y = z = 0 and another line Lt : x = 0, z = t. What happens as
t → 0? Set theoretically, we should get the union of two lines V (xy, z). But what is the scheme-theoretic
picture?

We get a bunch of schemes L ∪ Lt cut out by It = (y, z) ∩ (x, z − t) = (xy, xz, (z − t)y, (z − t)z). As
t → 0, this yields the ideal I0 = (xy, xz, zy, z2). This is the x, y axes in the plane z = 0 together with an
embedded point at the origin. Again, note that if one ”cuts out” the axes by computing the quotient ideal
(xy, xz, yz, z2) : (xy, z), you get the ideal of the embedded point (x, y, z).

The cool thing about this limit is that, although the underlying algebraic set is contained in a plane, the
scheme is not contained in a plane. That is, the limit seems to be remembering that it came from schemes
that were not contained in a plane.

Note that the limit really can’t just be the degenerate conic V (xy, z). The Hilbert polynomial of a line is
d+1, and likewise the Hilbert polynomial of two disjoint lines is 2d+2. Through direct algebraic computation
(i.e. count the size of k[X]d), one can compute that the Hilbert polynomial of the degenerate conic V (xy, z)
is 2d+ 1. That is, it’s missing a +1. This gets added in by the embedded point.

Lemma 39.5. Consider two closed subschemes X1, X2 of Pn. Then we have the following relationship of
Hilbert polynomials.

hX1∪X2
= hX1

+ hX2
− hX1∩X2

Proof. Let I1, I2 be the homogeneous ideal cutting out X1, X2 respectively. Let S = k[x0, . . . , xn] Then this
follows from the sequence of graded modules

0→ S

I1 ∩ I2
→ S

I1
⊕ S

I2
→ S

I1 + I2
→ 0

�
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Remark 39.6. If one wants more formality: we are considering the family

Spec k[x, y, z, t]/(xy, yz, (z − t)y, (z − t)z)→ Spec k[t]

and computing the flat limit t = 0. Be careful when computing these limits: if you thought of the ideals as
It = (y, z) ∩ (x, z − t) and tried to set t = 0, you might think the limit is It = (y, z) ∩ (x, z) = (xy, z), but
this is not correct!

Example 39.7. The previous example fits into a broader class of examples. Let’s think about projection
from a point onto a hyperplane. We’ll think about just the P3 case. Let’s think about projecting from
P = [0, 0, 0, 1] onto v3 = 0. We get the projection map

ϕ : P3 \ P → P2

[x0, x1, x2, x3] 7→ [x0, x1, x2]

Now for each a ∈ k, a 6= 0, we get an automorphism of P3 given by σa : [x0, x1, x2, x3] 7→ [x0, x1, x2, ax3]. Let
X1 be a closed subscheme of P3 not containing P . For each a 6= 0, let Xa = σa(X1). Then the Xa form a
flat family parametrized over A1

k \ 0. It is flat: every fiber will have the same Hilbert polynomial as X1.

Therefore, it should have a flat limit: the family extends to one over A1
k, and we have some notion of X0.

This limit will agree set-theoretically with ϕ(X1), that is, this family roughly interpolates between X1 and
its projection. But is the flat limit the projection? Not necessarily!

We don’t have time for it, but in Hartshorne Example III.9.8.4, he computes this limit when X1 is a twisted
cubic and its projection to P2 is a nodal planar cubic curve. Similarly, the flat limit is this nodal planar cubic
with an embedded point, and the flat limit is not contained in a plane. Again, the limit ”remembers” that
it is a limit of space curves and is scheme-theoretically not contained in a plane. Also, note that this limit
makes sense: a plain old cubic planar curve has Hilbert polynomial 3m, not 3m + 1, which is the Hilbert
polynomial of the twisted cubic.

To see that a twisted cubic C has Hilbert polynomial 3m+ 1: note that

dimH0(P3,OC(m)) = dimH0(P1,OP1(3m)) = 3m+ 1

So! We’ve demonstrated a lot of examples and non-examples of flat families, and computed some flat
limits. Let’s talk more about why we like flat families so much. They are supposed to correspond to the
idea of nice, continuous families, so what nice properties do they have? First, we need the notion to define
smooth morphisms. But furthermore: they have nice cohomological properties!

Theorem 39.8 (”Upper semicontinuity of cohomology”). Let f : X → Y be a projective morphism of
noetherian schemes, and F a coherent sheaf on X, flat over Y . Then for each i ≥ 0, we have

y ∈ Y 7→ dimk(y)H
i(Xy,Fy)

is an upper-semicontinuous function on Y . (Recall that a function ϕ : Y → Z is upper semicontinuous if
{y ∈ Y : ϕ(y) ≥ n} is closed for any n).

Proof. See Theorem III.12.8 in Hartshorne. �

Remark 39.9. In particular, this means S = {y : dimk(y)H
i(Xy,Fy) = 0} is open. If Y is irreducible, this

means S, the set where the cohomology vanishes, is dense so long as you can prove it is nonempty.

Remark 39.10. Continuing the previous remark: among many nice uses of the upper-semicontinuity of
cohomology, Hartshorne-Hirschowitz get a lot of mileage out of it in their ’81 paper on disjoint unions of
lines in Pn. The paper shows that for a general union of disjoint lines, the map

H0(OPn(d))→ H0(OX(d))

has maximal rank. Utilizing upper semicontinuity reduces this to showing that you can specialize the
lines along a flat family to a configuration X ′, possibly allowing some of the lines to collide, such that
H0(OPn(d)) → H0(OX′(d)) has maximal rank. By colliding some of the lines and configuring them in a
particular away along a fixed quadric Q, one can do an induction argument to show that this map for X ′ has
maximal rank.
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Proposition 39.11. Let {Xt} be a flat family of closed subschemes of Pnk parametrized by an irreducible
curve T of finite type over k. Suppose there is an open subset U of T where, over the closed points of X
within U , we have Xt is connected. Then Xt is connected for all t ∈ T .

Proposition 39.12. A flat morphism f : X → Y of finite type noetherian schemes is open.

We have not covered higher direct images, so we don’t quite have the knowledge to parse the following.
However, it is worth stating and giving the reference, and pointing out that this is a very commonly used
cohomology result for families, and part of why we like flat families so much:

Theorem 39.13 (Cohomology and base change). Let f : X → Y be a projective morphism of noetherian
schemes and F a coherent sheaf on X, flat over Y . Let y ∈ Y . Then

(1) if the natural map

ϕi(y) : Rif∗(F )⊗ k(y)→ Hi(Xy,Fy)

is surjective, then it is an isomorphism (and is an isomorphism in a neighborhood of y)
(2) In the ϕi surjective case, we get ϕi−1 is surjective ⇐⇒ Rif∗(F ) locally free in a nieghborhood of y.

Proof. See Theorem III.12.11 in Hartshorne. �

40. April 23: Smooth morphisms

Time to do a relative version of smoothness!

Definition 40.1. Let f : X → Y be a morphism of schemes of finite type over k. f is smooth of relative
dimension n provided the following three conditions hold:

(1) f is flat
(2) if X ′ ⊆ X and Y ′ ⊆ Y are irreducible components with f(X ′) ⊆ Y ′, then dimX ′ = dim y′ + n,
(3) for each point x ∈ X (not necessarily closed)

dimk(x)(ΩX/Y ⊗ k(x)) = n

Example 40.2. For any Y , AnY and PnY are smooth of relative dimension n over Y .

Remark 40.3. If X is integral, the last condition is equivalent to ΩX/Y being locally free on X of rank n.
7 This helps reduce to closed points, using Hartshorne Exercise II.5.7. (Let X be a noethierian scheme, F
coherent on X. Then if Fx is free at some point x, F |U is free in some neighborhood of x).

Example 40.4. If Y = Spec k with k algebraically closed, X a variety over k is smooth over k if and only
if X is regular and n-dimensional. (So if irreducible: ⇐⇒ nonsingular).

Proposition 40.5. The following various properties of smooth morphisms hold:

(1) An open immersion is smooth of relative dimension zero.
(2) Base change: if f : X → Y is smooth of relative dimension n, and g : Y ′ → Y is any morphism, then

f ′ : X ′ = X ×Y Y ′ → Y ′ is also smooth of relative dimension n.
(3) f : X → Y smooth of relative dimension n and g : Y → Z is smooth of relative dimension m means

g ◦ f : X → Z is smooth of relative dimension n+m.
(4) If X,Y are smooth over Z of relative dimension n,m respectively, then X ×Z Y smooth of relative

dimension n+m.

Theorem 40.6. Let f : X → Y be a morphism of schemes of finite type over k. Then f is smooth of relative
dimension n if and only if the following conditions hold:

(1) f is flat,

(2) for each y ∈ Y , set Xy = Xy ⊗k(y) k(y). Then Xy is required to be equidimensional of dimension n
and regular.

7This is by Lemma II.8.9 in Hartshorne: if A is a noetherian local integral domain with residue field k and quotient field
K: M is a finitely generated A-module with dimkM ⊗A k = dimKM ⊗A K = r if and only if M is free of rank r. This is a
Nakayama lemma proof.
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Remark 40.7. The latter condition is referred to as ”the fibers of f are geometrically regular of equidimen-
sion n.” Since the fibers are now schemes over an algebraically closed field, you can test for regularity by
looking at local freeness of Ω

Xy/k(y)
.

Thus the inuitive/shorthand notion of smooth morphisms is ”flat with geometrically smooth fibers.”

Proposition 40.8. Let f : X → Y be morphism of nonsingular varieties over an algebraically closed field
k. Let n = dimX − dimY . The following are equivalent:

(i) f is smooth of relative dimension n
(ii) ΩX/Y is locally free of rank n on X
(iii) for every closed point x ∈ X, the induced map on Zariski tangent spaces Tf : Tx → Tf(x) is surjective.

Remark 40.9. The last condition is meant to be an analogue of submersions in differential geometry. You
should think of smooth morphisms as generalizations of submersions (and thus of locally trivial fibrations).

Lemma 40.10 (Generic smoothness on source). Let f : X → Y be a dominant morphism of k varieties over
an algebraically closed field k of char 0. Then there is a nonempty open set U ⊆ X such that f : U → Y is
smooth.

Proof. One can show that if K(X)/K(Y ) is finitely generated with transcendence degree n, then ΩX/Y has
rank n at the generic point. Upper semicontinuity of fiber rank (HW 2) implies rank n on an open dense set.
Reducedness means constant rank means locally free of that rank (also HW 2), so ΩX/Y locally free of rank
n on that open set. One can also show ”generic flatness” so done (intersect two open sets). �

Lemma 40.11. Suppose π : X → Y is a finite type morphism to a Noetherian integral scheme, F coherent
on X. There is an open dense U ⊆ Y over which F is flat.

This uses Grothendieck’s generic freeness lemma: if B a Noetherian integral domain, then every f.g. B
algebra has prop: for any finitely generated A-module M , there exists f such that Mf is a free Bf -module.

Now, we would like generic smoothness on the target, as this is pretty useful in proofs. We can get this
from generic smoothness on the source. We’ll need the following lemma.

Proposition 40.12. Let f : X → Y be a morphism of schemes of finite type over an algebraically closed
field k of char 0. For any r, set

Xr = {closed points x ∈ X : rank Tf,x ≤ r}
then,

dim f(Xr) ≤ r
In practice, this lets us bound the (target) set where the tangent map is poorly behaved.

Proof. Let Y ′ be any irreducible component of f(Xr) and X ′ an irreducible component of Xr that dominates
Y ′. We give X ′, Y ′ reduced structures, and consider f ′ : X ′ → Y ′. Then there is a nonempty open subset
U ′ ⊆ X ′ such that f ′ : U ′ → Y ′ is smooth. Consider x ∈ U ′ ∩Xr and consider the diagram of tangent spaces

Tx,U ′ Tx,X

Ty,Y ′ Ty,Y

Tf′,x Tf,x

The horizontal arrows are injective because U ′, Y ′ are locally closed in X,Y . On the other hand, dimTf,x ≤ r
since x ∈ Xr and Tf ′,x is surjective because f ′ is smooth. Thus dimTy,Y ′ ≤ r and so dimY ′ ≤ r. Then every

component of f(Xr) has dimension ≤ r and we are done. �

Corollary 40.13 (Generic smoothness on base). Let f : X → Y be a dominant morphism of varieties over
an algebraically closed field k of characteristic 0. Assume X is nonsingular over k. Then there is a nonempty
open subset V ⊆ Y such that f : f−1(V )→ V is smooth.

Proof. Y is nonsingular on an open set, so restrict to that set first. So we may assume Y is nonsingular.
Let r = dimY . Let Xr−1 ⊆ X be the subset defined in Proposition 40.12. Then dim f(Xr−1) ≤ r − 1, so
removing it from Y and adjusting X accordingly, we may assume that rank Tf ≥ r for every closed point of
X. But since Y is nonsingular of dimension r, this means Tf is surjective for every closed point of X. Thus
f is smooth by Proposition 40.8. �
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Remark 40.14. Note that if f was not originally dominant, then V ⊆ Y \ f(X) and the morphism will be
empty.

41. April 25: Group schemes, homogeneous varieties, theorems of Kleiman and Bertini

For the next topic, we need the rough notion of a group variety. A group variety G (which we will also
refer to as a group scheme) over an algebraically closed field is a variety G with multiplication and inverse
morphisms

µ : G×G→ G, ρ : G→ G

such that the set of closed points of G becomes a group under the operation µ, and the inverses are given by
ρ.

Example 41.1. An example of a group scheme is Gm = Spec k[t, t−1] = A1
k \ 0. Its inverse is the morphism

induced by t 7→ t−1. Note that the preimage of the maximal ideal (t− a) under this is (t−1− a) = (1− at) =
(a−1 − t).

This group scheme’s multiplication map is induced by

Spec k[t, t−1]→ Spec k[s, s−1, u, u−1]

t 7→ s · u

Then one can show that the preimage of the maximal ideal (s− a, u− b) is (t− ab).

A group variety G acts on a variety X if there is a morphism θ : G × X → X which induces a group
homomorphism G(k) → Aut(X) of groups. A homogeneous space is a variety X and group variety G such
that the closed points of G act transitively on the closed points of X.

One of the most important examples is the following.

Example 41.2. Projective space Pnk is a homogeneous space for the action of G = PGLn+1.

Example 41.3. A group scheme G acts on itself via left multiplication. Thus a group scheme is a homoge-
neous space (under this left multiplication action).

Remark 41.4. Homogeneous spaces are nonsingular (over k algebraically closed, char 0). It is nonsingular
on an open set, but then the transitive group action means nonsingular everywhere. In particular, group
schemes are nonsingular because they are homogeneous spaces.

Theorem 41.5 (Kleiman). We work over an algebraically closed field k of characteristic 0. Let X be a
homogeneous space with action by a group G. Let f : Y → X, g : Z → X be morphisms of nonsingular
varieties Y,Z to X (one useful example to think about: f, g both closed embeddings). For any σ ∈ G(k), let
Y σ be Y with the morphism σ ◦ f to X. Then there is a nonempty open subset V ⊆ G such that for every
σ ∈ V (k) we have

Y σ ×X Z

is nonsingular and either empty or of dimension exactly

dimY + dimZ − dimX

Remark 41.6. Let us build intuition with the case of f, g closed embeddings. If Y,Z are closed subschemes,
this fiber product computes the intersection. So, this theorem is saying if you have two closed smooth
subschemes and take generic translates of one, they (as in, Y σ and Z) intersect to something smooth in the
expected dimension (or empty). If Y, Z are closed subschemes of complimentary dimension, this says taking
generic translates of one results in an intersection that is a collection of reduced points. This is very nice for
computations 8

8With a little tweaking, this theorem lets you compute the effective and nef cones in all dimensions for Grasmmannians
Gr(k, n) over C. You can think of this problem in the following way: consider the singular homology groups H2d(Gr(k, n)) of the
Grassmannian. Tensor with Q or R. Within this vector space, you can look at the cone spanned by classes that are equivalent
to the class of some algebraic subscheme of Gr(k, n). We call this the cone of effective d-folds. One might ask: what is this

cone?
It turns out it is spanned by Schubert cycles of the appropriate dimension. Take a class equivalent to some subscheme X.

Write it as a sum of Schubert cycles X =
∑
aτΣτ , which we can do because the Schubert cycles give a basis for the homology.
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Proof of Theorem 41.5. Consider the morphism

h : G× Y → X

given by composing f with the group action θ : G×X → X. That is, you may Y to X and translate it in X
via the action. G is nonsingular because it is a group scheme, and Y is nonsingular by assumption, so G×Y
is nonsingular. Generic smoothness says there is a nonempty open subset U ⊆ X such that

h : h−1(U)→ U

is smooth.
G acts on G×Y by left multiplication, and G acts on X by the map θ. These two actions are compatible.

So, for σ ∈ G(k), we have h : h−1(Uσ)→ Uσ is smooth. The Uσ cover X, so h is smooth everywhere.
Now, let’s write down a bunch of maps. Let W = (G× Y )×X Z. We have the following info.

W Z Spec k

G× Y X

G

h′

g′ g

h

p1

h is smooth, so h′ is smooth because base extension preserves smoothness. Z is nonsingular and so smooth
over k. Thus W is smooth over k, as smoothness is preserved under composition. Thus, W is nonsingular.

Let q = p1 ◦ g′ : W → G. Generic smoothness yields a nonempty open V ⊆ G such that q : q−1(V ) → V
is smooth. Then if σ ∈ V (k), the fiber Wσ will be nonsingular. But note that Wσ = Y σ ×X Z. So we have
shown Y σ ×X Z is nonsingular as desired. (Note that h is f and then translation, so the fiber is indeed
Y σ ×X Z and not just Y ×X Z).

If the map q : q−1(V )→ V is not empty, we proceed to compute the fiber dimensions.
First, h is smooth of some relative dimension. Looking at the dimensions of source and target, it is relative

of dimension

dimG+ dimY − dimX

And so h′, as it is base-change of h, has the same relative dimension. Thus, we have that

dimW = (dimG+ dimY − dimX) + dimZ

If W is not empty, then again looking at dimension of source and target, q has relative dimension dimW −
dimG. So the fibers Wσ must have dimension

dimWσ = dimW − dimG

= (dimG+ dimY − dimX) + dimZ − dimG

= dimY + dimZ − dimX

�

We can now give a quick proof of Bertini’s theorem (generic hyperplane sections of a nonsingular sub-
scheme of Pn are nonsingular). In fact, we get something a little more general.

Recall that for a divisor D on a smooth projective variety over k = k, the complete linear system associated
to D is

|D| = {D′ : D′ ≥ 0, D′ ∼ D}
That is, it is the effective divisors linearly equivalent to D. Since we have

(1) D′ effective and D′ ∼ D ⇐⇒ D′ = Div (s) for some s ∈ Γ(X,L (D)) \ {0}.
(2) Div (s) = Div (s′) ⇐⇒ there exists λ ∈ k∗ such that s′ = λs.

Consider the intersections of X with the dual Schubert cycle Σ∗τ . This computes the coefficient aτ . Then aτ = X ·Στ = X ·σ(Στ )

for generic translates by σ ∈ PGLn+1. Kleiman’s theorem says that the last expression is a bunch of reduced points. Thus,
aτ ≥ 0. So the effective cone is contained in the cone spanned by Schubert cycles of appropriate dimension, and certainly the
cone spanned by Schubert cycles is contained in the effective cone. So, they must be equal.
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we have that |D| = P(Γ(X,L (D))), where L (D) is the line bundle associated to a Weil divisor D. A
linear system L on X is a subset of |D| giving a linear subspace of P(Γ(X,L (D)).

Corollary 41.7 (Bertini’s theorem). Let X be a nonsingular projective variety over an algebraically closed
field k of char 0. Let L be a linear system without base points. Then almost every element of L, considered
as a closed subscheme of X, is nonsingular (may be reducible, though). By almost every, we mean there is
an open dense subset of L corresponding to nonsingular subschemes.

Proof. Let f : X → Pn be the morphism to Pn determined by the basepoint-free system L. Note that we get
a bonafide morphism because L is basepoint-free.

Consider Pn as a homogeneous space under the action of PGL. Apply the theorem of Kleiman, taking
g : H → Pn being the inclusion of a hyperplane. For generic σ ∈ G(k), we get X ×Pn Hσ = f−1(Hσ) is
nonsingular. But the various divisors f−1(Hσ) are just the elements of the linear system, by construction of
f . Thus almost all (i.e. generically) the divisors that are elements of L are nonsingular. �

42. April 28: Curves! Riemann-Roch!

Now for curves! We’ll work over k algebraically closed. We will need to set some conventions for termi-
nology when we are doing Hartshorne IV material. We’ll use curve to mean an integral scheme of dimension
1, proper over k, all of whose local rings are regular (so it is nonsingular). In this scenario, we have that it is
projective over k. This is from Hartshorne Proposition II.6.7 (Let X be one-dimensional integral, separated,
nonsingular scheme of finite type over k = k. Then X is projective over k ⇐⇒ it is proper over k).
We’ll use scheme in the to mean integral scheme of dimension 1 of finite type over k. ”Point” will mean a
closed point, unless we specify ”generic point.”

For curves, the most important invariant is the genus. There are two notions: the geometric genus, which
is dimk Γ(X,ωX), and the arithmetic genus. In general, the arithmetic genus of a scheme is

pa(X) = (−1)dimX(χ(OX)− 1)

For a curve, this turns into (1− χ(OC)).
For curves, it turns out that arithmetic and geometric genus align. To proceed further, we need the

following.

Lemma 42.1. For an integral projective k-scheme, H0(X,OX) = k, and so dimkH
0(X,OX) = 1.

Proof. Firstly, this is a consequence of Hartshorne Theorem I.3.4.
Alternatively, note that H0(X,OX) = Γ(X,OX) corresponds to morphisms to A1

k. Take ϕ : X → A1.
Then the image f(X) must be closed and proper (Hartshorne Exercise II.4.4: roughly, the image of a proper
scheme is proper). Thus the image must look like a collection of points. Furthermore, because X is irreducible,
it must be precisely one point. So the global sections on X are constants. �

From this lemma, we get that pa(X) = dimH1(X,OX).

Proposition 42.2. If X is a curve, then

pa(X) = pg(X) = dimkH
1(X,OX)

Thus, in this case, we refer to both as the genus.

Proof. Utilizing the lemma, we have that

pa(X) = (1− χ(OX)) = 1− dimkH
0(X,OX) + dimkH

1(X,OX) = dimkH
1(X,OX).

The fact that
pg(X) = dimkH

0(X,ωx) = dimkH
1(X,OX)

is a consequence of Serre duality. �

Remark 42.3. Perhaps a useful example is to think of a family of smooth elliptic curves degenerating to a
cuspidal cubic. We want to work with projective schemes, but for convenience let’s (temporarily) work in an
affine patch, and consider the family

Spec k[x, y, t]/(y2 − x3 − t)→ Spec k[t]
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For t 6= 0, the fiber Ct is a smooth cubic curve (one can look at the Jacobian to see this) and so we can
compute the geometric genus via adjunction and see that pg(Ct) = 1. However, at t = 0 the geometry is
different: the curve is no longer smooth, and it is birational to P1. We compute the geometric genus by
computing it on a smooth birational model, in this case P1, to see that pg(C0) = 0.

But the arithmetic genus remains unchanged. We still have that, after homogenizing and viewing these
curves in P2:

0→ OP2(−Ct) = OP2(−3)→ OP2 → OCt
→ 0

so χ(Ct) is constant over the family, and thus pa(Ct) = 1 is constant. This makes sense: arithmetically,
nothing has majorly changed: we are still considering a cubic planar curve.

Recall that a Weil divisor on a curve looks like
∑
niPi. The degree is

∑
ni. Given a Weil divisor D we

can associate to it a line bundle L (D) = OX(D), and this gives an isomorphism betewen the class group
and the Picard group for nonsingular curves.

A divisor D is effective if D =
∑
niPi with all ni ≥ 0. The set of all effective divisors linearly equivalent

to D is the complete linear series |D|. One can show that the elements of |D| correspond to P(H0(X,L (D)).

Definition 42.4. Let `(D) = dimkH
0(X,L (D)). It is called the length of the divisor D.

Lemma 42.5. Let D be a divisor on a curve X. If `(D) 6= 0, we must have degD ≥ 0. If `(D) 6= 0 and
degD = 0, then D ∼ 0, i.e. L (D) ∼= OX .

Proof. If `(D) 6= 0, then |D| is nonempty and so D is linearly equivalent to an effective divisor. The degree
map is Cl(X)→ Z, so constant on equivalence classes. Thus deg(D) ≥ 0.

If degD = 0, then D is linearly equivalent to an effective divisor of degree zero. The only possibility is
D ∼ 0, and so L (D) ∼= OX . �

Definition 42.6. We refer to any Weil divisor whose associated line bundle is isomorphic to ωX as a/the
canonical divisor. It is generally denoted by KX .

Theorem 42.7 (Riemann-Roch). Let D be a divisor on a curve X, and let g denote the genus of X. Then:

`(D)− `(KX −D) = degD + 1− g

Proof. We have:

`(D)− `(KX −D) = dimH0(X,L (D))− dimH0(ωX ⊗L (D)∨)

= dimH0(X,L (D))− dimH1(X,L (D)) (Serre duality)

= χ(L (D))

So we need to show that, for any divisor D, we have χ(L (D)) = degD + 1 − g. We will do this with an
induction argument. Consider D = 0. Then the formula becomes

dimH0(OX)− dimH1(OX) = 0 + 1− g
which is true, as H0(OX) = k and dimH1(OX) = g by the previous lemma.

Next, we show that the formula is true for a divisor D if and only if it is true for D+P . We get from the
zero divisor to all other divisors by adding/subtracting points, so this will get use the formula for all D.

For a point P in a curve, the ideal sheaf is given by L (−P ) = OX(−P ) and the structure sheaf of the
point is a skyscraper sheaf k(P ). We have

0→ L (−P ) = OX(−P )→ OX → k(P )→ 0

Tensor with L (D + P ) = OX(D + P ) to get

0→ L (D)→ L (D + P )→ k(P )→ 0

L (D + P ) being locally free and rank 1 leaves the last sheaf unchanged. Additivity of Euler characteristic
in short exact sequences means

χ(L (D + P )) = χ(L (D)) + 1

On the other side of the Riemann-Roch formula, deg(D + P ) = degD + 1. So adding a point P to D adds
one to both sides of the formula. So, the formula holds for D if and only if it holds for D+ P . Thus, we are
done. �
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This theorem has many neat and practical uses, some of which you’ll see on your HW. Some uses include:

Corollary 42.8. Let X be a curve of genus g. Then deg(KX) = 2g − 2.

Proof. Taking D = KX in Riemann-Roch, we get

degKX + 1− g = `(KX)− `(KX −KX)

= `(KX)− `(OX)

= g − 1

Which implies degKX = 2g − 2. �

Corollary 42.9. We now have the tools to formalize our example from Remark 25.8. That is, we can give
an example of a very ample line bundle that does not pull back to something very ample under a finite
morphism.

Consider an elliptic curve E with its 2-to-1 map to P1
C . (On affine charts, this looks like y2 = x2 + ax+ c

projecting to the y coordinate). OP1(1) is very ample, but f∗(O(1)) = M is not. We will use M to refer to
both the line bundle and a divisor corresponding to that bundle interchangeably. We have

`(M )− `(ωE −M ) = deg(M ) + 1− g(E)

The left side is just `(M ) because ωE −M has negative degree. The right side is 2− 1 + 1 = 2. So M has
a two-dimensional space of global sections, and at best defines a map to P1. This cannot be an immersion,
as E and P1 are curves with different genuses.

Corollary 42.10. A curve X (careful with our definition of curve in this chapter!) is rational if and only if
its genus is zero.

Proof. Curves for us are complete and nonsingular, so X is rational if and only if X ∼= P1. If X ∼= P1, then
certainly pa(P1) = 0.

For the reverse direction, suppose g = 0. Let P,Q be distinct points on X. Set D = P − Q. Then,
deg(KX −D) = deg(KX)− deg(D) = 2g − 2− 0 = −2. Then `(K −D) = 0 because it has negative degree.
Thus:

`(D) = `(K −D) + degD + 1− g
= 0 + 0 + 1− 0 = 1.

But D has degree 0, so by Lemma 42.5, we have D ∼ 0. Thus, P ∼ Q. That is, there is a rational function
f on X with (f) = P −Q. Then f determines a finite morphism ϕ : X → P1, and ϕ∗(0) = P , so the map is
degree 1. Therefore, X is rational. �

43. April 30: Embeddings to projective space, all curves can be embedded in P3

Time to study embeddings of curves into projective space! We saw some criterion for this before, but now
we’ll go indepth and also talk about how any curve can be embedded into P3.

For various line bundle descriptors such as ample, very ample, etc, we say a divisor has that property
(ample, very ample, etc) if its associated line bundle L (D) does.

Definition 43.1. A divisor is called special if `(KX −D) > 0 and nonspecial if `(KX −D) = 0. That is,
being nonspecial means the ”correction term” of Riemann-Roch is zero. For nonspecial divisors, we have

`(D) = degD + 1− g

If degD > 2g − 2, then D is automatically nonspecial, as KX −D has negative degree.

Proposition 43.2. Let D be a divisor on a curve X. Then:

(1) the complete linear system |D| has no base points (and thus defines a morphism to Pn) if and only
if for every P ∈ X we have

dim |D − P | = dim |D| − 1

(2) D is very ample if and only if for every P,Q ∈ X (P = Q case is counted as a possibility) we have

dim |D − P −Q| = dim |D| − 2
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Proof. Consider the exact sequence of sheaves

0→ L (D − P )→ L (D)→ k(P )→ 0

Taking global sections:

0→ Γ(X,L (D − P ))→ Γ(X,L (D))→ k

so dim |D − P | is dim |D| or dim |D| − 1. We also have a linear map

ϕ : |D − P | → |D|
E 7→ E + P

which is injective. The dimensions of these linear systems are equal if and only if ϕ is surjective (we are
thinking of these are finite dimensional spaces, after all). But ϕ is surjective if and only if P is a base point
of |D|, so this yields (a).

Now, onto (b). We may assume |D| has no base points. (Very ample divisors have no base points, and on
the flip side if the dimension equation holds we have that moving from |D| to |D − P | drops the dimension
of the linear space by 1, so it is base point free by (a). Here we use that moving from |D| to |D − P | can
drop the dimension of the space by at most one).

So, we get a morphism X → Pn determined by |D|. To see when it is a closed immersion, we use the local
criteria: the morphism needs to separate points and separate tangent vectors.

To separate points, this is equivalent to, for any P 6= Q, we have Q is not a base point of |D−P |. By (a),
this is equivalent to

dim |D − P −Q = dim |D| − 2

Separating tangent vectors is equivalent to: for any P ∈ X, there should be a divisor D′ ∈ |D| such that P
occurs with exactly multiplicity 1 in D′. (We are using that the dimension of tangent spaces of curves are 1,
and that divisors in |D| correspond to divs of global sections, and that to separate tangent vectors we need
a section whose germ is in mPLP but not m2

PLP ). But this means P is not a base point of |D − P |, or
equivalently, by (a),

dim |D − 2P | = dim |D| − 2

�

Corollary 43.3. Let D be a divisor on a curve X with genus g.

(1) If degD ≥ 2g then |D| is base point free
(2) If degD ≥ 2g + 1 then D is very ample.

Proof. For (a): both D,D − P are nonspecial, so the count from Riemann-Roch yields

dim |D − P | = dim |D| − 1

so by (a) of the previous, |D| is base point free.
For (b): D and D − P −Q are nonspecial, so the count from Riemann-Roch yields

dim |D − P −Q| = dim |D| − 2

and so by (b) of previous, |D| is very ample. �

Corollary 43.4. A divisor D on a curve X is ample if and only if degD > 0.

Remark 43.5. Observe that for D a very ample divisor on a curve X whose complete linear series yields
an embedding ϕ : X → Pn, the degree of ϕ(X) ⊆ Pn is just degD. Seeing how many points are in the
intersection of the curve and a hyperplane is just computing the degree of the divisor obtained by pulling
back H.

Example 43.6. Consider X an elliptic curve (i.e. the g = 1 case). Any divisor D of degree 3 is very ample
and nonspecial, so `(D) = 3. Thus D defines an embedding into P2 as a cubic (degree 3) curve. It is also
quick to see that D is very ample if and only if degD ≥ 3.
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Similar such counts will give you immediate guarantees for what n a curve of genus g can be embedded
in. But in fact, one can show that a curve can always be embedded into P3. We will do this by first putting
it in Pn (which we can do: these curves are projective and have some very ample divisor) and then carefully
projecting from well-chosen points O to hyperplanes Pn−1. Well-chosen in this case means avoiding the secant
variety.

For P,Q ∈ X,P 6= Q, the secant line between them is simply the line (in Pn) joining P and Q. For
P = Q, we take the line to be the tangent line. That is, there is a line L whose tangent space TPL is equal
to TPX ⊆ TPPn.

Proposition 43.7. Let X be a curve in Pn and O ∈ Pn with X 6∈ O. Let ϕ : X → Pn−1 be the projection
from O to a hyperplane Pn−1 ⊆ Pn. ϕ is a closed immersion if and only if both of the following hold

(1) O is not on any secant line of X,
(2) O is not on any tangent line of X

(So really, this is saying O is not contained in the secant variety of X).

Proof. The morphism ϕ corresponds to the linear system (on X) cut out by hyperplane H passing through
O. This system separates points if and only if there is an H containing O,P but not Q, which is fine so long
as O 6∈ PQ. This system separates tangent vectors if and only if there is an H containing O,P and meeting
X at P with precisely multiplicity 1, which is doable so long as O is not on the tangent line. �

Corollary 43.8. If X is a curve in Pn with n ≥ 4, then we can find a point O satisfying the conditions of
the previous proposition.

Proof. This can be seen through the secant variety having dimension 3. (One can do this with an incidence
correspondence. Roughly, there is one dimension of choice for the first point, one dimension of choice for the
second, and then a dimension contributed by the line between them). �

Corollary 43.9. Any curve can be embedded in P3.

One can hope: what happens if you continue this projection down to P2? You can check that you have an
O suitably nice enough (lies on finitely many secants, not on tangent lines, multisecants (line meeting > 2),
secant joining two points with same tangent line). Projecting from that point gives a birational morphism
from X to a curve in P2 with at worst nodes as singularities. Here nodes are things that roughly ”look like

k[x, y]/(xy). In a more formal sense, this is saying ÔX,p is isomorphic to k[[x, y]]/(xy).

44. May 02: Riemann-Hurwitz

You may be familiar with Riemann-Hurwitz in the topological/Riemann surface context. We do its
algebraic counterpart here. Again, Riemann-Hurwitz for us will be a relationship between genuses of curves
when one covers another, factoring in ramification. Here the analogue of a covering map is a finite morphism
f . We study how the canonical divisor changes across this map.

For any point P , we can define the ramification index to see where this map has degenerate behavior.
Note that f is necessarily flat, so its fiber length stays unchanged even if the size of the support varies. It is
flat by Criterion 2: it is a map f : X → Y with Y integral, regular, dim 1, and X dominates the base.

Definition 44.1 (Ramification index). Let f : X → Y be a finite morphism of curves. Let P be a point of
X. Let Q = f(P ) and t ∈ OQ be a local parameter/uniformizer. The stalks at closed points are integrally
closed, Noetherian, local, and have Krull dimension one, so they are DVRs.

View t in OP via the map
f ] : OQ → f∗OP → OP

and define eP = vP (t), where vP is the valuation in OP . eP is called the ramification index of P . If ep > 1,
we say f is ramified at P , and if eP = 1 we say f is unramified at P .

If char k = 0, or char k = 0 and p - eP , then the ramfication is tame. If p | eP , we say it is wild.

Now, recall that we had a morphism f∗ : Div Y → Div X given by

f∗(Q) =
∑
P→Q

eP · P

This pullback morphism is compatible with the one on line bundles, so that f∗(L (D)) ∼= L (f∗D).
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Example 44.2. Let’s look at a simple example. Consider the curve Proj k[x, y, z]/(yz − x2)→ Proj k[y, z]
given by

[x, y, z]→

{
[y/z, 1] z 6= 0

[1, z/y] y 6= 0

On the affine chart z 6= 0 this looks like Spec k[x, y]/(y−x2)→ Spec k[y] given by projection onto the y factor
The fiber over (y) is a length 2 scheme supported at the origin in the plane. We get that the uniformizer
y in k[y](y) pulls back to y ∈ (k[x, y]/(y − x2))(x,y) = (k[x, y]/(y − x2))(x), where it has valuation two. So
the map is ramified at the origin with ramification index two. LIkewise, one can check that it is ramified at
infinity also with ramification index two. (Note that the ramification index could be at most two).

Definition 44.3. The morphism f : X → Y is separable if K(X) is a separable field extension of K(Y ).
Note that this conditions is automatically fulfilled in characteristic 0.

Proposition 44.4. Let f : X → Y be a finite separable morphism of curves. There is an exact sequence of
sheaves on X:

0→ f∗ΩY → ΩX → ΩX/Y → 0

Proof. This is the relative cotangent sequence from Proposition 29.5

(0→) π∗ΩY → ΩX → ΩX/Y → 0

with the zero filled in. One can motivate from differential geometry by looking at the dualized version

0→ TX/Y → TX → π∗(TY )→ 0

where X
π→ Y and the tangent space TX splits into vectors parallel and perpendicular to the fiber.

The main thing is we need f∗ΩY → ΩX to be injective. Both are invertible sheaves on X, so it’s
enough to show that the map is nonzero at the generic point. But this is ΩK(X)/K(Y ) which is zero for
separable extensions. So f∗ΩY → ΩX is surjective at the generic point. See Hartshorne Proposition IV.2.1
for details. �

This proposition says that the relative canonical ΩX/Y measures the difference of the two divisors ΩX ,ΩY .
For P ∈ X, set Q = f(P ). Let t be the local parameter at Q, and u the local parameter at P . dt generates
the (free) module ΩY,Q and du generates the (free) module ΩX,P . Then there is some g ∈ OP such that
f∗dt = g · du. We use dt/du to denote this g.

Proposition 44.5. Let f : X → Y be a finite, separable morphism of curves.

(a) ΩX/Y is a torsion sheaf (that is, its abelian groups are all torsion) with support equal to the set of
ramification points of f . Consequently, f is ramified at only finitely many points.

(b) For each P ∈ X, the stalk ΩX/Y )P is a principal OP module (i.e. a direct summand term of the full
thing) of finite length equal to vP (dt/du).

(c) If f if tamely ramified at P , then

length (ΩX/Y )P = eP − 1

and if f is wildly ramified at P , the length is > eP − 1.

Proof.

(a) f∗ΩY and ΩX are both line bundles on X, so ΩX/Y has to be torsion. But (ΩX/Y )P = 0 if and only if
f∗dt is a generator for ΩX,P . This happens if and only if t is a local parameter/uniformizer for OP , i.e.
f is unramified at P .

(b) The sequence yields that (ΩX/Y )P ∼= ΩX,P /f
∗ΩY,Q ∼= OP /(dt/du).

(c) By definition of ramification index eP , we can write t = aueP with a ∈ O×P . Then the Leibniz rule yields

dt = aePu
eP−1du+ ueP da

If that ramification is tame, the first term is nonzero, and so vP (dt/du) will be eP −1. If the ramification
is wild, the first term zeroes out and the valuation is at least eP .

�
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Definition 44.6. Let f : X → Y be a finite, separable morphism of curves. The ramification divisor of
f is

R =
∑
P∈X

length(ΩX/Y )P · P

By the prior result, only finitely many of the terms are nonzero, so this sum makes sense.

Definition 44.7. Let f : X → Y be a finite, separable morphism of curves. Then:

KX ∼ f∗KY +R

Proof. By construction, the divisor R is effective and has structure sheaf OR ∼= ΩX/Y . Tensoring the relative

cotangent sequence with the invertible sheaf Ω−1
X we get

0→ f∗ΩY ⊗ Ω−1
X → OX → OR → 0

The rightmost term remains unchanged because sheaves with finite support are not affected by tensoring by
line bundles (locally you are just tensoring with OX,P at a few finite places). Looking at this sequence, we

have f∗ΩY ⊗ Ω−1
X is isomorphic to the ideal sheaf of R. But this is L (−R) = OX(−R). Rearranging the

data of this isomorphism yields
ΩX ∼= f∗ΩY ⊗OX(R)

and then taking divisors yields
KX ∼ f∗KY +R

�

Corollary 44.8 (Riemann-Hurwitz). Let f : X → Y be a finite separable morphism of curves. Let n = deg f .
Then

2g(X)− 2 = n(2g(Y )− 2) + degR

where g(C) denotes the genus of a curve C. If f is only tamely ramified, then this yields the more commonly-
cited:

2g(X)− 2 = n(2g(Y )− 2) +
∑
P∈X

(eP − 1)

Proof. Take degrees on either side of KX ∼ f∗KY +R, using that the degree of the canonical is 2g − 2. �

Corollary 44.9. If f : X → Y is separable, the degree of the ramification divisor is even.

Corollary 44.10. If f : X → Y is any finite morphism of curves, then g(X) ≥ g(Y ).

Proof. Use that the field extension K(X)/K(Y ) can be split into a separable part and a purely inseparable
part. Riemann-Hurwitz gives the inequality for separable morphisms, and purely inseperable ones do not
change the genus. See Hartshorne Proposition IV.2.5 and example IV.2.5.4 and the surrounding exposition
for more details. �

Example 44.11. Returning to our C = Spec k[x, y]/(y − x2)→ Spec k[y] = P1 example, what we get is

2g(C)− 2 = 2(0)− 2 = −2

2(2g(P1)− 2) +
∑

(eP − 1) = 2 · (2(g(P1))− 2) + (e0 − 1) + (e∞ − 1) = −4 + 1 + 1 = −2

and both sides align as they should.

Example 44.12. One way elliptic curves are described as double covers of P1 branched over four points.
Note that this yields a genus count of

2g(E)− 2 = 2 · (2(0)− 2) + 1 + 1 + 1 + 1 = 0

which aligns with g(E) = 1 as it should. (If the ellipiic curve is written as y2 = x3 + ax+ b, then the branch
points are seen at the roots of the cubic, along with the point at infinity).
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